Hebbian theory is a neuropsychological theory claiming that an increase in synaptic efficacy arises from a presynaptic cell's repeated and persistent stimulation of a postsynaptic cell. It is an attempt to explain synaptic plasticity, the adaptation of brain neurons during the learning process. It was introduced by Donald Hebb in his 1949 book The Organization of Behavior. The theory is also called Hebb's rule, Hebb's postulate, and cell assembly theory. Hebb states it as follows:
Let us assume that the persistence or repetition of a reverberatory activity (or "trace") tends to induce lasting cellular changes that add to its stability. ... When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes part in firing it, some growth process or metabolic change takes place in one or both cells such that A’s efficiency, as one of the cells firing B, is increased.
The theory is often summarized as "Cells that fire together wire together." However, Hebb emphasized that cell A needs to "take part in firing" cell B, and such causality can occur only if cell A fires just before, not at the same time as, cell B. This aspect of causation in Hebb's work foreshadowed what is now known about spike-timing-dependent plasticity, which requires temporal precedence.
The theory attempts to explain associative or Hebbian learning, in which simultaneous activation of cells leads to pronounced increases in synaptic strength between those cells. It also provides a biological basis for errorless learning methods for education and memory rehabilitation. In the study of neural networks in cognitive function, it is often regarded as the neuronal basis of unsupervised learning.
Hebbian theory concerns how neurons might connect themselves to become engrams. Hebb's theories on the form and function of cell assemblies can be understood from the following:
The general idea is an old one, that any two cells or systems of cells that are repeatedly active at the same time will tend to become 'associated' so that activity in one facilitates activity in the other.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Recent advances in machine learning have contributed to the emergence of powerful models for how humans and other animals reason and behave. In this course we will compare and contrast how such brain
The course introduces students to a synthesis of modern neuroscience and state-of-the-art data management, modelling and computing technologies with a focus on the biophysical level.
In this course we study mathematical models of neurons and neuronal networks in the context of biology and establish links to models of cognition. The focus is on brain dynamics approximated by determ
In neuroscience, synaptic plasticity is the ability of synapses to strengthen or weaken over time, in response to increases or decreases in their activity. Since memories are postulated to be represented by vastly interconnected neural circuits in the brain, synaptic plasticity is one of the important neurochemical foundations of learning and memory (see Hebbian theory). Plastic change often results from the alteration of the number of neurotransmitter receptors located on a synapse.
In neurophysiology, long-term depression (LTD) is an activity-dependent reduction in the efficacy of neuronal synapses lasting hours or longer following a long patterned stimulus. LTD occurs in many areas of the CNS with varying mechanisms depending upon brain region and developmental progress. As the opposing process to long-term potentiation (LTP), LTD is one of several processes that serves to selectively weaken specific synapses in order to make constructive use of synaptic strengthening caused by LTP.
A neural circuit (also known as a biological neural network BNNs) is a population of neurons interconnected by synapses to carry out a specific function when activated. Multiple neural circuits interconnect with one another to form large scale brain networks. Neural circuits have inspired the design of artificial neural networks, though there are significant differences. Early treatments of neural networks can be found in Herbert Spencer's Principles of Psychology, 3rd edition (1872), Theodor Meynert's Psychiatry (1884), William James' Principles of Psychology (1890), and Sigmund Freud's Project for a Scientific Psychology (composed 1895).
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
Covers neuromorphic computing, challenges in ternary and binary computing, hardware simulations of the brain, and new materials for artificial brain cells.
Explores different forms of synaptic plasticity and computational models to understand its mechanisms and induction protocols.
Explores different forms of synaptic plasticity and the mechanisms behind them, emphasizing the role of calcium in inducing and maintaining plastic changes.
The lateral amygdala (LA) encodes fear memories by potentiating sensory inputs associated with threats and, in the process, recruits 10-30% of its neurons per fear memory engram. However, how the local network within the LA processes this information and w ...
Nature Portfolio2024
, , , , , , , , , , ,
Synaptic plasticity underlies the brain’s ability to learn and adapt. This process is often studied in small groups of neurons in vitro or indirectly through its effects on behavior in vivo. Due to the limitations of available experimental techniques, inve ...
2023
Information derived from experiences is incorporated into the brain as changes to ensembles of cells, termed engram cells, which allow memory storage and recall. The mechanism by which those changes hold specific information is unclear. Here, we test the h ...