Concept

Katanin

Summary
Katanin is a microtubule-severing AAA protein. It is named after the Japanese sword called a katana. Katanin is a heterodimeric protein first discovered in sea urchins. It contains a 60 kDa ATPase subunit, encoded by KATNA1, which functions to sever microtubules. This subunit requires ATP and the presence of microtubules for activation. The second 80 kDA subunit, encoded by KATNB1, regulates the activity of the ATPase and localizes the protein to centrosomes. Electron microscopy shows that katanin forms 14–16 nm rings in its active oligomerized state on the walls of microtubules (although not around the microtubule). Structural analysis using electron microscopy has revealed that microtubule protofilaments change from a straight to a curved conformation upon GTP hydrolysis of β-tubulin. However, when these protofilaments are part of a polymerized microtubule, the stabilizing interactions created by the surrounding lattice lock subunits into a straight conformation, even after GTP hydrolysis. In order to disrupt these stable interactions, katanin, once bound to ATP, oligomerizes into a ring structure on the microtubule wall - in some cases oligomerization increases the affinity of katanin for microtubules and stimulates its ATPase activity. Once this structure is formed, katanin hydrolyzes ATP, and likely undergoes a conformational change that puts mechanical strain on the tubulin subunits, which destabilizes their interactions within the microtubule lattice. The predicted conformational change also likely decreases the affinity of katanin for tubulin as well as for other katanin proteins, which leads to disassembly of the katanin ring structure, and recycling of the individual inactivated proteins. The severing of microtubules by katanin is regulated by protective microtubule-associated proteins (MAPs), and the p80 subunit (p60 severs microtubules much better in the presence of p80). These mechanisms have different consequences, depending on where in the cell they are activated or disrupted.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.