Thermoplastic elastomers (TPE), sometimes referred to as thermoplastic rubbers, are a class of copolymers or a physical mix of polymers (usually a plastic and a rubber) that consist of materials with both thermoplastic and elastomeric properties. While most elastomers are thermosets, thermoplastics are in contrast relatively easy to use in manufacturing, for example, by injection moulding. Thermoplastic elastomers show advantages typical of both rubbery materials and plastic materials. The benefit of using thermoplastic elastomers is the ability to stretch to moderate elongations and return to its near original shape creating a longer life and better physical range than other materials. The principal difference between thermoset elastomers and thermoplastic elastomers is the type of cross-linking bond in their structures. In fact, crosslinking is a critical structural factor which imparts high elastic properties.
There are six generic classes of commercial TPEs (designations according to ISO 18064) together with one unclassified category:
Styrenic block copolymers, TPS (TPE-s)
Thermoplastic polyolefinelastomers, TPO (TPE-o)
Thermoplastic Vulcanizates, TPV (TPE-v or TPV)
Thermoplastic polyurethanes, TPU (TPU)
Thermoplastic copolyester, TPC (TPE-E)
Thermoplastic polyamides, TPA (TPE-A)
Unclassified thermoplastic elastomers, TPZ
TPE materials that come from the block copolymers group include CAWITON†, MELIFLEX, THERMOLAST K†, THERMOLAST M†, Chemiton, Arnitel, Hytrel, Dryflex†, Mediprene, Kraton, Pibiflex, Sofprene†, Tuftec†and Laprene†.
† indicates styrenic block copolymers (TPE-s).
Laripur, Desmopan and Elastollan are examples of thermoplastic polyurethanes (TPU).
Sarlink, Santoprene, Termoton, Solprene, THERMOLAST V, Vegaprene, and Forprene are examples of TPV materials.
Examples of thermoplastic olefin elastomers (TPO) compound are For-Tec E or Engage. Ninjaflex used for 3D printing.