Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Chemiresistive gas sensors composed of a thermoplastic polymer matrix and conductive fillers offer various advantages for detecting volatile organic compounds (VOCs), including low power consumption due to near-room-temperature operation, high sensitivity, and inherent selectivity toward VOCs. However, such sensors have a slow response time as the polymer matrix often has a glass transition temperature (T-g) higher than the sensor operating temperature slowing the analyte diffusion to/from the polymer. A plasticizer lowers polymer T-g to match the sensor operation temperature, reducing its response time. In this study, the effect of a plasticizer diethylene glycol dibenzoate (DEGDB) on the sensing properties of polystyrene (PS)-carbon black (CB) composite is investigated to obtain sensors with a fast response time and high sensitivity to VOCs. The sensors are fabricated via drop-on-demand inkjet printing, providing a high degree of control over the sensory film morphology and reproducibility. A design-of-experiment (DoE) approach is adopted to find the optimum ink and print parameters with a minimum number of experiments. As a result, sensors with 30 times faster response time and 25 times higher effective sensitivity are obtained while operating near room temperature (27 degrees C). Furthermore, the sensors show high sensitivity toward aromatic hydrocarbons (toluene, benzene, and ethylbenzene), with a sub-10 ppm limit of detection (LoD) and a negligible sensitivity toward humidity. Our results show the potential of PS-DEGDB-CB composite as a selective and cost-effective sensory material compatible with large-scale manufacturing techniques for selective near-room-temperature detection of toxic VOCs.
Jürgen Brugger, Thomas Maeder, Mohammadmahdi Kiaee
Véronique Michaud, Valentin Rougier