A phase-locked loop or phase lock loop (PLL) is a control system that generates an output signal whose phase is related to the phase of an input signal. There are several different types; the simplest is an electronic circuit consisting of a variable frequency oscillator and a phase detector in a feedback loop. The oscillator's frequency and phase are controlled proportionally by an applied voltage, hence the term voltage-controlled oscillator (VCO).
The oscillator generates a periodic signal of a specific frequency, and the phase detector compares the phase of that signal with the phase of the input periodic signal, to adjust the oscillator to keep the phases matched.
Keeping the input and output phase in lockstep also implies keeping the input and output frequencies the same. Consequently, in addition to synchronizing signals, a phase-locked loop can track an input frequency, or it can generate a frequency that is a multiple of the input frequency. These properties are used for computer clock synchronization, demodulation, and frequency synthesis.
Phase-locked loops are widely employed in radio, telecommunications, computers and other electronic applications. They can be used to demodulate a signal, recover a signal from a noisy communication channel, generate a stable frequency at multiples of an input frequency (frequency synthesis), or distribute precisely timed clock pulses in digital logic circuits such as microprocessors. Since a single integrated circuit can now provide a complete phase-locked-loop building block, the technique is widely used in modern electronic devices, with output frequencies from a fraction of a hertz up to many gigahertz.
Spontaneous synchronization of weakly coupled pendulum clocks was noted by the Dutch physicist Christiaan Huygens as early as 1673. Around the turn of the 19th century, Lord Rayleigh observed synchronization of weakly coupled organ pipes and tuning forks. In 1919, W. H. Eccles and J. H.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Comparaison entre les systèmes à composants discrets et les systèmes intégrés. Introduction aux systèmes électroniques numériques et analogiques et à leur interfaçage. Analyse sous forme d'un projet
The course deals with the control of grid connected power electronic converters for renewable applications, covering: converter topologies, pulse width modulation, modelling, control algorithms and co
Ce cours présente l'analyse et la conception des circuits et systèmes électroniques sous forme discrète et intégrée. L'accent est mis sur les applications dans le domaine des télécommunications.
This paper describes a balanced frequency shift keying (FSK) modulation, namely quasi-balanced FSK (QB-FSK), for energy-efficient high-data-rate communication. Not suffering from data-pattern dependency, the proposed modulation method enables frequency mod ...
Explores demodulation in PLL and FLL, Costas PLL principle, loop filter selection, FLL discriminators, and differences in signal acquisition and tracking under weak GNSS signals.
A voltage-controlled oscillator (VCO) is an electronic oscillator whose oscillation frequency is controlled by a voltage input. The applied input voltage determines the instantaneous oscillation frequency. Consequently, a VCO can be used for frequency modulation (FM) or phase modulation (PM) by applying a modulating signal to the control input. A VCO is also an integral part of a phase-locked loop. VCOs are used in synthesizers to generate a waveform whose pitch can be adjusted by a voltage determined by a musical keyboard or other input.
Synchronization is the coordination of events to operate a system in unison. For example, the conductor of an orchestra keeps the orchestra synchronized or in time. Systems that operate with all parts in synchrony are said to be synchronous or in sync—and those that are not are asynchronous. Today, time synchronization can occur between systems around the world through satellite navigation signals and other time and frequency transfer techniques. Time-keeping and synchronization of clocks is a critical problem in long-distance ocean navigation.
Radio is the technology of signaling and communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3 hertz (Hz) and 3,000 gigahertz (GHz). They are generated by an electronic device called a transmitter connected to an antenna which radiates the waves, and received by another antenna connected to a radio receiver. Radio is widely used in modern technology, in radio communication, radar, radio navigation, remote control, remote sensing, and other applications.
Phase-shifting electron holography is an excellent method to reveal electron wave phase information with very high phase sensitivity over a large range of spatial frequencies. It circumvents the limiting trade-off between fringe spacing and visibility of s ...
Amsterdam2023
, ,
Estimating the impedance of a grid-connected device or of a grid at the point of common coupling is important for evaluating the interaction between them. Impedance measurement involves a perturbation injection device, that perturbs the system, and a measu ...