Accelerator physics is a branch of applied physics, concerned with designing, building and operating particle accelerators. As such, it can be described as the study of motion, manipulation and observation of relativistic charged particle beams and their interaction with accelerator structures by electromagnetic fields.
It is also related to other fields:
Microwave engineering (for acceleration/deflection structures in the radio frequency range).
Optics with an emphasis on geometrical optics (beam focusing and bending) and laser physics (laser-particle interaction).
Computer technology with an emphasis on digital signal processing; e.g., for automated manipulation of the particle beam.
Plasma physics, for the description of intense beams.
The experiments conducted with particle accelerators are not regarded as part of accelerator physics, but belong (according to the objectives of the experiments) to, e.g., particle physics, nuclear physics, condensed matter physics or materials physics. The types of experiments done at a particular accelerator facility are determined by characteristics of the generated particle beam such as average energy, particle type, intensity, and dimensions.
Microwave cavityShunt impedanceSuperconducting Radio Frequency and Reciprocity (electromagnetism)
While it is possible to accelerate charged particles using electrostatic fields, like in a Cockcroft-Walton voltage multiplier, this method has limits given by electrical breakdown at high voltages. Furthermore, due to electrostatic fields being conservative, the maximum voltage limits the kinetic energy that is applicable to the particles.
To circumvent this problem, linear particle accelerators operate using time-varying fields. To control this fields using hollow macroscopic structures through which the particles are passing (wavelength restrictions), the frequency of such acceleration fields is located in the radio frequency region of the electromagnetic spectrum.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course presents basic physics ideas underlying the workings of modern accelerators. We will examine key features and limitations of these machines as used in accelerator driven sciences like high
Accelerator physics covers a wide range of very exciting topics. This course presents basic physics ideas and the technologies underlying the workings of modern accelerators. An overview of the new id
The course will cover the physics of particle detectors. It will introduce the experimental techniques used in nuclear and particle physics. The lecture includes the interaction of particles with matt
A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams. Large accelerators are used for fundamental research in particle physics. The largest accelerator currently active is the Large Hadron Collider (LHC) near Geneva, Switzerland, operated by the CERN. It is a collider accelerator, which can accelerate two beams of protons to an energy of 6.5 TeV and cause them to collide head-on, creating center-of-mass energies of 13 TeV.
Physical Review is a peer-reviewed scientific journal established in 1893 by Edward Nichols. It publishes original research as well as scientific and literature reviews on all aspects of physics. It is published by the American Physical Society (APS). The journal is in its third series, and is split in several sub-journals each covering a particular field of physics. It has a sister journal, Physical Review Letters, which publishes shorter articles of broader interest.
A particle beam is a stream of charged or neutral particles. In particle accelerators, these particles can move with a velocity close to the speed of light. There is a difference between the creation and control of charged particle beams and neutral particle beams, as only the first type can be manipulated to a sufficient extent by devices based on electromagnetism. The manipulation and diagnostics of charged particle beams at high kinetic energies using particle accelerators are main topics of accelerator physics.
Dynamic aperture is an important concept for the study of non-linear beam dynamics in circular accelerators. It describes the extent of the phase-space region where a particle's motion remains bounded over a given number of turns. Understanding the feature ...
2024
Particle accelerators are the drivers for large-scale research infrastructures for particle physics but also for many branches of condensed matter research. The types of accelerator-driven research infrastructures include particle colliders, neutron, muon ...
This thesis delves into the critical study of particle transport in matter, particularly emphasisingits implications for machine protection at CERN's accelerator complex and facilities. To conductstudies of this nature, FLUKA and Geant4 stand out within a ...
Explores advanced concepts in particle accelerators and their applications of artificial intelligence, including machine learning libraries and anomaly detection.