Summary
Accelerator physics is a branch of applied physics, concerned with designing, building and operating particle accelerators. As such, it can be described as the study of motion, manipulation and observation of relativistic charged particle beams and their interaction with accelerator structures by electromagnetic fields. It is also related to other fields: Microwave engineering (for acceleration/deflection structures in the radio frequency range). Optics with an emphasis on geometrical optics (beam focusing and bending) and laser physics (laser-particle interaction). Computer technology with an emphasis on digital signal processing; e.g., for automated manipulation of the particle beam. Plasma physics, for the description of intense beams. The experiments conducted with particle accelerators are not regarded as part of accelerator physics, but belong (according to the objectives of the experiments) to, e.g., particle physics, nuclear physics, condensed matter physics or materials physics. The types of experiments done at a particular accelerator facility are determined by characteristics of the generated particle beam such as average energy, particle type, intensity, and dimensions. Microwave cavityShunt impedanceSuperconducting Radio Frequency and Reciprocity (electromagnetism) While it is possible to accelerate charged particles using electrostatic fields, like in a Cockcroft-Walton voltage multiplier, this method has limits given by electrical breakdown at high voltages. Furthermore, due to electrostatic fields being conservative, the maximum voltage limits the kinetic energy that is applicable to the particles. To circumvent this problem, linear particle accelerators operate using time-varying fields. To control this fields using hollow macroscopic structures through which the particles are passing (wavelength restrictions), the frequency of such acceleration fields is located in the radio frequency region of the electromagnetic spectrum.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (7)
Related concepts (16)
Particle accelerator
A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams. Large accelerators are used for fundamental research in particle physics. The largest accelerator currently active is the Large Hadron Collider (LHC) near Geneva, Switzerland, operated by the CERN. It is a collider accelerator, which can accelerate two beams of protons to an energy of 6.5 TeV and cause them to collide head-on, creating center-of-mass energies of 13 TeV.
Physical Review
Physical Review is a peer-reviewed scientific journal established in 1893 by Edward Nichols. It publishes original research as well as scientific and literature reviews on all aspects of physics. It is published by the American Physical Society (APS). The journal is in its third series, and is split in several sub-journals each covering a particular field of physics. It has a sister journal, Physical Review Letters, which publishes shorter articles of broader interest.
Accelerator physics
Accelerator physics is a branch of applied physics, concerned with designing, building and operating particle accelerators. As such, it can be described as the study of motion, manipulation and observation of relativistic charged particle beams and their interaction with accelerator structures by electromagnetic fields. It is also related to other fields: Microwave engineering (for acceleration/deflection structures in the radio frequency range). Optics with an emphasis on geometrical optics (beam focusing and bending) and laser physics (laser-particle interaction).
Show more