Summary
In electrochemistry, overpotential is the potential difference (voltage) between a half-reaction's thermodynamically-determined reduction potential and the potential at which the redox event is experimentally observed. The term is directly related to a cell's voltage efficiency. In an electrolytic cell the existence of overpotential implies that the cell requires more energy than thermodynamically expected to drive a reaction. In a galvanic cell the existence of overpotential means less energy is recovered than thermodynamics predicts. In each case the extra/missing energy is lost as heat. The quantity of overpotential is specific to each cell design and varies across cells and operational conditions, even for the same reaction. Overpotential is experimentally determined by measuring the potential at which a given current density (typically small) is achieved. The four possible polarities of overpotentials are listed below. An electrolytic cell's anode is more positive, using more energy than thermodynamics require. An electrolytic cell's cathode is more negative, using more energy than thermodynamics require. A galvanic cell's anode is less negative, supplying less energy than thermodynamically possible. A galvanic cell's cathode is less positive, supplying less energy than thermodynamically possible. The overpotential increases with growing current density (or rate), as described by the Tafel equation. An electrochemical reaction is a combination of two half-cells and multiple elementary steps. Each step is associated with multiple forms of overpotential. The overall overpotential is the summation of many individual losses. Voltage efficiency describes the fraction of energy lost through overpotential. For an electrolytic cell this is the ratio of a cell's thermodynamic potential divided by the cell's experimental potential converted to a percentile. For a galvanic cell it is the ratio of a cell's experimental potential divided by the cell's thermodynamic potential converted to a percentile.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.