Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
An electrocatalyst is a catalyst that participates in electrochemical reactions. Electrocatalysts are a specific form of catalysts that function at electrode surfaces or, most commonly, may be the electrode surface itself. An electrocatalyst can be heterogeneous such as a platinized electrode. Homogeneous electrocatalysts, which are soluble, assist in transferring electrons between the electrode and reactants, and/or facilitate an intermediate chemical transformation described by an overall half reaction. Major challenges in electrocatalysts focus on fuel cells. The chloralkali process is a large scale application that uses electrocatalysts. This technology supplies most of the chlorine and sodium hydroxide required by many industries. The cathode is a mixed metal oxide clad titanium anode (also called a dimensionally stable anode). Many organofluorine compounds are produced by electrofluorination. One manifestation of this technology is the Simons process, which can be described as: R3C–H + HF → R3C–F + H2 In the course of a typical synthesis, this reaction occurs once for each C–H bond in the precursor. The cell potential is maintained near 5–6 V. The anode, the electrocatalyst, is nickel-plated. Acrylonitrile is converted to adiponitrile on an industrial scale via electrocatalysis. In general, a catalyst is an agent that increases the speed of a chemical reaction without being consumed by a reaction. Thermodynamically, a catalyst lowers the activation energy required for a chemical reaction to take place. An electrocatalyst is a catalyst that affects the activation energy of an electrochemical reaction. Shown below is the activation energy of chemical reactions as it relates to the energies of products and reactants. The activation energy in electrochemical processes is related to the potential, i.e. voltage, at which a reaction occurs. Thus, electrocatalysts frequently change the potential at which oxidation and reduction processes are observed.
Raffaella Buonsanti, Anna Loiudice, Petru Pasquale Albertini, Jan Vávra, Gaétan Philippe Louis Ramona
Corsin Battaglia, Nukorn Plainpan, Alessandro Senocrate