Summary
X-ray optics is the branch of optics that manipulates X-rays instead of visible light. It deals with focusing and other ways of manipulating the X-ray beams for research techniques such as X-ray crystallography, X-ray fluorescence, small-angle X-ray scattering, X-ray microscopy, X-ray phase-contrast imaging, and X-ray astronomy. Since X-rays and visible light are both electromagnetic waves they propagate in space in the same way, but because of the much higher frequency and photon energy of X-rays they interact with matter very differently. Visible light is easily redirected using lenses and mirrors, but because the real part of the complex refractive index of all materials is very close to 1 for X-rays, they instead tend to initially penetrate and eventually get absorbed in most materials without changing direction much. There are many different techniques used to redirect X-rays, most of them changing the directions by only minute angles. The most common principle used is reflection at grazing incidence angles, either using total external reflection at very small angles or multilayer coatings. Other principles used include diffraction and interference in the form of zone plates, refraction in compound refractive lenses that use many small X-ray lenses in series to compensate by their number for the minute index of refraction, Bragg reflection from a crystal plane in flat or bent crystals. X-ray beams are often collimated or reduced in size using pinholes or movable slits typically made of tungsten or some other high-Z material. Narrow parts of an X-ray spectrum can be selected with monochromators based on one or multiple Bragg reflections by crystals. X-ray spectra can also be manipulated by having the X-rays pass through a filter (optics). This will typically reduce the low-energy part of the spectrum, and possibly parts above absorption edges of the elements used for the filter.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (5)
MICRO-420: Selected topics in advanced optics
This course proposes a selection of different facets of modern optics and photonics.
CH-633: Advanced Solid State and Surface Characterization
State-of-the-art surface/thin film characterization methods of polycrystalline/nano/amorphous materials. Selected topics from thin film X-ray diffraction (GIWAXS, GISAXS, PDF), electronic and optical
CH-632: Principles and Applications of X-ray Diffraction
Basic theoretical aspects of Crystallography and the interaction between X-ray radiation and matter. Experimental aspects of materials-oriented powder and single crystal diffraction. Familiarization w
Show more
Related concepts (3)
Telescope
A telescope is a device used to observe distant objects by their emission, absorption, or reflection of electromagnetic radiation. Originally it was an optical instrument using lenses, curved mirrors, or a combination of both to observe distant objects – an optical telescope. Nowadays, the word "telescope" is defined as wide range of instruments capable of detecting different regions of the electromagnetic spectrum, and in some cases other types of detectors.
X-ray crystallography
X-ray crystallography is the experimental science determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to diffract into many specific directions. By measuring the angles and intensities of these diffracted beams, a crystallographer can produce a three-dimensional picture of the density of electrons within the crystal. From this electron density, the mean positions of the atoms in the crystal can be determined, as well as their chemical bonds, their crystallographic disorder, and various other information.
Mirror
A mirror or looking glass is an object that reflects an . Light that bounces off a mirror will show an image of whatever is in front of it, when focused through the lens of the eye or a camera. Mirrors reverse the direction of the image in an equal yet opposite angle from which the light shines upon it. This allows the viewer to see themselves or objects behind them, or even objects that are at an angle from them but out of their field of view, such as around a corner.