Thyroid function tests (TFTs) is a collective term for blood tests used to check the function of the thyroid. TFTs may be requested if a patient is thought to suffer from hyperthyroidism (overactive thyroid) or hypothyroidism (underactive thyroid), or to monitor the effectiveness of either thyroid-suppression or hormone replacement therapy. It is also requested routinely in conditions linked to thyroid disease, such as atrial fibrillation and anxiety disorder. A TFT panel typically includes thyroid hormones such as thyroid-stimulating hormone (TSH, thyrotropin) and thyroxine (T4), and triiodothyronine (T3) depending on local laboratory policy. Thyroid-stimulating hormone (TSH, thyrotropin) is generally increased in hypothyroidism and decreased in hyperthyroidism, making it the most important test for early detection of both of these conditions. The result of this assay is suggestive of the presence and cause of thyroid disease, since a measurement of elevated TSH generally indicates hypothyroidism, while a measurement of low TSH generally indicates hyperthyroidism. However, when TSH is measured by itself, it can yield misleading results, so additional thyroid function tests must be compared with the result of this test for accurate diagnosis. TSH is produced in the pituitary gland. The production of TSH is controlled by thyrotropin-releasing hormone (TRH), which is produced in the hypothalamus. TSH levels may be suppressed by excess free T3 (fT3) or free T4 (fT4) in the blood. First-generation TSH assays were done by radioimmunoassay and were introduced in 1965. There were variations and improvements upon TSH radioimmunoassay, but their use declined as a new immunometric assay technique became available in the middle of the 1980s. The new techniques were more accurate, leading to the second, third, and even fourth generations of TSH assay, with each generation possessing ten times greater functional sensitivity than the last. Third generation immunometric assay methods are typically automated.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
BIO-377: Physiology by systems
Le but est de connaitre et comprendre le fonctionnement des systèmes cardiovasculaire, urinaire, respiratoire, digestif, ainsi que du métabolisme de base et sa régulation afin de déveloper une réflect
Related lectures (28)
Endocrinology: Systems Physiology II
Explores the production and effects of key hormones in the endocrine system, emphasizing regulatory axes and feedback mechanisms.
Endocrinology: General Structure and Hormone Production
Explores the anatomy and hormone production of the endocrine system, focusing on T3, T4, aldosterone, glucocorticoids, and adrenaline.
Chemical Engineering Fundamentals
Covers the basics of Chemical Engineering, including material and energy balances, process classification, and system descriptions.
Show more
Related publications (24)
Related people (1)
Related concepts (15)
Thyroid hormones
File:Thyroid_system.svg|thumb|upright=1.5|The [[thyroid]] system of the thyroid hormones [[triiodothyronine|T3]] and T4References used in image are found in image article in Commons:[[Commons:File:Thyroid system.png#References]].
Graves' ophthalmopathy
Graves’ ophthalmopathy, also known as thyroid eye disease (TED), is an autoimmune inflammatory disorder of the orbit and periorbital tissues, characterized by upper eyelid retraction, lid lag, swelling, redness (erythema), conjunctivitis, and bulging eyes (exophthalmos). It occurs most commonly in individuals with Graves' disease, and less commonly in individuals with Hashimoto's thyroiditis, or in those who are euthyroid. It is part of a systemic process with variable expression in the eyes, thyroid, and skin, caused by autoantibodies that bind to tissues in those organs.
Hypothalamic–pituitary–thyroid axis
The hypothalamic–pituitary–thyroid axis (HPT axis for short, a.k.a. thyroid homeostasis or thyrotropic feedback control) is part of the neuroendocrine system responsible for the regulation of metabolism and also responds to stress. As its name suggests, it depends upon the hypothalamus, the pituitary gland, and the thyroid gland. The hypothalamus senses low circulating levels of thyroid hormone (Triiodothyronine (T3) and Thyroxine (T4)) and responds by releasing thyrotropin-releasing hormone (TRH).
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.