In mathematics, an algebraic function field (often abbreviated as function field) of n variables over a field k is a finitely generated field extension K/k which has transcendence degree n over k. Equivalently, an algebraic function field of n variables over k may be defined as a finite field extension of the field K = k(x1,...,xn) of rational functions in n variables over k.
As an example, in the polynomial ring k [X,Y] consider the ideal generated by the irreducible polynomial Y 2 − X 3 and form the field of fractions of the quotient ring k [X,Y]/(Y 2 − X 3). This is a function field of one variable over k; it can also be written as (with degree 2 over ) or as (with degree 3 over ). We see that the degree of an algebraic function field is not a well-defined notion.
The algebraic function fields over k form a ; the from function field K to L are the ring homomorphisms f : K → L with f(a) = a for all a in k. All these morphisms are injective. If K is a function field over k of n variables, and L is a function field in m variables, and n > m, then there are no morphisms from K to L.
The function field of an algebraic variety of dimension n over k is an algebraic function field of n variables over k.
Two varieties are birationally equivalent if and only if their function fields are isomorphic. (But note that non-isomorphic varieties may have the same function field!) Assigning to each variety its function field yields a duality (contravariant equivalence) between the category of varieties over k (with dominant rational maps as morphisms) and the category of algebraic function fields over k. (The varieties considered here are to be taken in the scheme sense; they need not have any k-rational points, like the curve X2 + Y2 + 1 = 0 defined over the reals, that is with k = R.)
The case n = 1 (irreducible algebraic curves in the scheme sense) is especially important, since every function field of one variable over k arises as the function field of a uniquely defined regular (i.e. non-singular) projective irreducible algebraic curve over k.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Covers the composition of functions, continuity, and elementary functions, explaining the concept of continuity and the construction of elementary functions.
In this course we will describe in numerous examples how methods from l-adic cohomology as developed by Grothendieck, Deligne and Katz can interact with methods from analytic number theory (prime numb
In mathematics, an algebraic number field (or simply number field) is an extension field of the field of rational numbers such that the field extension has finite degree (and hence is an algebraic field extension). Thus is a field that contains and has finite dimension when considered as a vector space over . The study of algebraic number fields, and, more generally, of algebraic extensions of the field of rational numbers, is the central topic of algebraic number theory.
In mathematics, more specifically field theory, the degree of a field extension is a rough measure of the "size" of the field extension. The concept plays an important role in many parts of mathematics, including algebra and number theory — indeed in any area where fields appear prominently. Suppose that E/F is a field extension. Then E may be considered as a vector space over F (the field of scalars). The dimension of this vector space is called the degree of the field extension, and it is denoted by [E:F].
This is a glossary of arithmetic and diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of proposed conjectures, which can be related at various levels of generality. Diophantine geometry in general is the study of algebraic varieties V over fields K that are finitely generated over their prime fields—including as of special interest number fields and finite fields—and over local fields.
We provide new explicit examples of lattice sphere packings in dimensions 54, 55, 162, 163, 486 and 487 that are the densest known so far, using Kummer families of elliptic curves over global function fields.In some cases, these families of elliptic curves ...
We study the elliptic curves given by y(2) = x(3) + bx + t(3n+1) over global function fields of characteristic 3 ; in particular we perform an explicit computation of the L-function by relating it to the zeta function of a certain superelliptic curve u(3) ...
The present thesis deals with problems arising from discrete mathematics, whose proofs make use of tools from algebraic geometry and topology. The thesis is based on four papers that I have co-authored, three of which have been published in journals, and o ...