Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In mathematics, an algebraic function field (often abbreviated as function field) of n variables over a field k is a finitely generated field extension K/k which has transcendence degree n over k. Equivalently, an algebraic function field of n variables over k may be defined as a finite field extension of the field K = k(x1,...,xn) of rational functions in n variables over k. As an example, in the polynomial ring k [X,Y] consider the ideal generated by the irreducible polynomial Y 2 − X 3 and form the field of fractions of the quotient ring k [X,Y]/(Y 2 − X 3). This is a function field of one variable over k; it can also be written as (with degree 2 over ) or as (with degree 3 over ). We see that the degree of an algebraic function field is not a well-defined notion. The algebraic function fields over k form a ; the from function field K to L are the ring homomorphisms f : K → L with f(a) = a for all a in k. All these morphisms are injective. If K is a function field over k of n variables, and L is a function field in m variables, and n > m, then there are no morphisms from K to L. The function field of an algebraic variety of dimension n over k is an algebraic function field of n variables over k. Two varieties are birationally equivalent if and only if their function fields are isomorphic. (But note that non-isomorphic varieties may have the same function field!) Assigning to each variety its function field yields a duality (contravariant equivalence) between the category of varieties over k (with dominant rational maps as morphisms) and the category of algebraic function fields over k. (The varieties considered here are to be taken in the scheme sense; they need not have any k-rational points, like the curve X2 + Y2 + 1 = 0 defined over the reals, that is with k = R.) The case n = 1 (irreducible algebraic curves in the scheme sense) is especially important, since every function field of one variable over k arises as the function field of a uniquely defined regular (i.e. non-singular) projective irreducible algebraic curve over k.