Summary
In statistics, the likelihood-ratio test assesses the goodness of fit of two competing statistical models, specifically one found by maximization over the entire parameter space and another found after imposing some constraint, based on the ratio of their likelihoods. If the constraint (i.e., the null hypothesis) is supported by the observed data, the two likelihoods should not differ by more than sampling error. Thus the likelihood-ratio test tests whether this ratio is significantly different from one, or equivalently whether its natural logarithm is significantly different from zero. The likelihood-ratio test, also known as Wilks test, is the oldest of the three classical approaches to hypothesis testing, together with the Lagrange multiplier test and the Wald test. In fact, the latter two can be conceptualized as approximations to the likelihood-ratio test, and are asymptotically equivalent. In the case of comparing two models each of which has no unknown parameters, use of the likelihood-ratio test can be justified by the Neyman–Pearson lemma. The lemma demonstrates that the test has the highest power among all competitors. Suppose that we have a statistical model with parameter space . A null hypothesis is often stated by saying that the parameter is in a specified subset of . The alternative hypothesis is thus that is in the complement of , i.e. in , which is denoted by . The likelihood ratio test statistic for the null hypothesis is given by: where the quantity inside the brackets is called the likelihood ratio. Here, the notation refers to the supremum. As all likelihoods are positive, and as the constrained maximum cannot exceed the unconstrained maximum, the likelihood ratio is bounded between zero and one. Often the likelihood-ratio test statistic is expressed as a difference between the log-likelihoods where is the logarithm of the maximized likelihood function , and is the maximal value in the special case that the null hypothesis is true (but not necessarily a value that maximizes for the sampled data) and denote the respective arguments of the maxima and the allowed ranges they're embedded in.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (32)
PHYS-467: Machine learning for physicists
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
MATH-232: Probability and statistics
A basic course in probability and statistics
Show more
Related publications (218)
Related concepts (20)
Chi-squared distribution
In probability theory and statistics, the chi-squared distribution (also chi-square or -distribution) with degrees of freedom is the distribution of a sum of the squares of independent standard normal random variables. The chi-squared distribution is a special case of the gamma distribution and is one of the most widely used probability distributions in inferential statistics, notably in hypothesis testing and in construction of confidence intervals.
Model selection
Model selection is the task of selecting a model from among various candidates on the basis of performance criterion to choose the best one. In the context of learning, this may be the selection of a statistical model from a set of candidate models, given data. In the simplest cases, a pre-existing set of data is considered. However, the task can also involve the design of experiments such that the data collected is well-suited to the problem of model selection.
Student's t-test
A t-test is a type of statistical analysis used to compare the averages of two groups and determine if the differences between them are more likely to arise from random chance. It is any statistical hypothesis test in which the test statistic follows a Student's t-distribution under the null hypothesis. It is most commonly applied when the test statistic would follow a normal distribution if the value of a scaling term in the test statistic were known (typically, the scaling term is unknown and therefore a nuisance parameter).
Show more
Related MOOCs (6)
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Introduction to Discrete Choice Models
The course introduces the theoretical foundations to choice modeling and describes the steps of operational modeling.
Show more