En statistiques et en théorie des probabilités, la loi du centrée (prononcé « khi carré » ou « khi-deux ») avec k degrés de liberté est la loi de la somme de carrés de k lois normales centrées réduites indépendantes. La loi du est utilisée en inférence statistique et pour les tests statistiques notamment le test du χ2. La loi du χ2 non centrée généralise la loi du . Soient k variables aléatoires X, ... , X indépendantes suivant la loi normale centrée et réduite, c'est-à-dire la loi normale de moyenne 0 et d'écart-type 1. Alors par définition la variable X définie par suit une loi du χ à k degrés de liberté. La loi de X est notée χ (k) ou χ . La densité de probabilité de X notée f est : pour tout x positif où Γ est la fonction gamma. Sa fonction de répartition est : où est la fonction gamma incomplète. Conformément au théorème central limite, lorsque k est « grand » (k > 100), la loi d'une variable de χ, somme de variables aléatoires indépendantes, peut être approchée par une loi normale d'espérance k et de variance 2k. D'autres fonctions en χ peuvent converger plus rapidement vers la loi normale, notamment en ayant X ~ χ(k) et k > 30 : – peut être approchée par une loi normale centrée réduite (approximation de Ronald Aylmer Fisher). peut être approchée par une loi normale de moyenne 1 – 2/9k et de variance 2/9k (approximation de Wilson et Hilferty, 1931). peut être approchée par (approximation de Hoaglin). Cette loi est principalement utilisée dans le test du χ basé sur la loi multinomiale pour vérifier l'adéquation d'une distribution empirique à une loi de probabilité donnée. Plus généralement elle s'applique dans le test d'hypothèses à certains seuils (indépendance notamment). Elle est également utilisée pour établir des intervalles de confiance concernant la variance ou l'écart-type de variables aléatoires gaussiennes. Cette loi a été décrite pour la première fois par le géodésiste et statisticien allemand Friedrich Robert Helmert dans des articles de 1875–6, où il a calculé la distribution d'échantillonnage de la variance de l'échantillon d'une population normale.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (32)
DH-406: Machine learning for DH
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
MATH-232: Probability and statistics (for IC)
A basic course in probability and statistics
FIN-417: Quantitative risk management
This course is an introduction to quantitative risk management that covers standard statistical methods, multivariate risk factor models, non-linear dependence structures (copula models), as well as p
Afficher plus
Séances de cours associées (292)
Distributions de probabilités dans les études environnementales
Explore les distributions de probabilité pour les variables aléatoires dans les études sur la pollution atmosphérique et le changement climatique, couvrant les statistiques descriptives et inférentielles.
Estimation de l'intervalle: Méthode des moments
Couvre la méthode des moments pour estimer les paramètres et construire des intervalles de confiance basés sur des moments empiriques correspondant à des moments de distribution.
Génération de nombres aléatoires quantiques
Explore la génération de nombres quantiques aléatoires, en discutant des défis et des implémentations de générer une bonne randomité à l'aide de dispositifs quantiques.
Afficher plus
Publications associées (378)
Concepts associés (51)
Loi de Student
En théorie des probabilités et en statistique, la loi de Student est une loi de probabilité, faisant intervenir le quotient entre une variable suivant une loi normale centrée réduite et la racine carrée d'une variable distribuée suivant la loi du χ. Elle est notamment utilisée pour les tests de Student, la construction d'intervalle de confiance et en inférence bayésienne. Soit Z une variable aléatoire de loi normale centrée et réduite et soit U une variable indépendante de Z et distribuée suivant la loi du χ à k degrés de liberté.
Loi Gamma
En théorie des probabilités et en statistiques, une distribution Gamma ou loi Gamma est un type de loi de probabilité de variables aléatoires réelles positives. La famille des distributions Gamma inclut, entre autres, la loi du χ2 et les distributions exponentielles et la distribution d'Erlang. Une distribution Gamma est caractérisée par deux paramètres k et θ et qui affectent respectivement la forme et l'échelle de la représentation graphique de sa fonction de densité.
Test du rapport de vraisemblance
En statistiques, le test du rapport de vraisemblance est un test statistique qui permet de tester un modèle paramétrique contraint contre un non contraint. Si on appelle le vecteur des paramètres estimés par la méthode du maximum de vraisemblance, on considère un test du type : contre On définit alors l'estimateur du maximum de vraisemblance et l'estimateur du maximum de vraisemblance sous .
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.