Summary
Albinism is the congenital absence of melanin in an animal or plant resulting in white hair, feathers, scales and skin and reddish pink or blue eyes. Individuals with the condition are referred to as albinos. Varied use and interpretation of the terms mean that written reports of albinistic animals can be difficult to verify. Albinism can reduce the survivability of an animal; for example, it has been suggested that albino alligators have an average survival span of only 24 hours due to the lack of protection from UV radiation and their lack of camouflage to avoid predators. It is a common misconception that all albino animals have characteristic pink or red eyes (resulting from the lack of pigment in the iris allowing the blood vessels of the retina to be visible), however this is not the case for some forms of albinism. Familiar albino animals include in-bred strains of laboratory animals (rats, mice and rabbits), but populations of naturally occurring albino animals exist in the wild, e.g. Mexican cave tetra. Albinism is a well-recognized phenomenon in molluscs, both in the shell and in the soft parts. It has been claimed by some, e.g. that albinism can occur for a number of reasons aside from inheritance, including genetic mutations, diet, living conditions, age, disease, or injury. However, this is contrary to definitions where the condition is inherited. Oculocutaneous albinism (OCA) is a clearly defined set of seven types of genetic mutations which reduce or completely prevent the synthesis of eumelanin or pheomelanin, resulting in reduced pigmentation. Type I oculocutaneous albinism (OCA1a) is the form most commonly recognised as 'albino' as this results in a complete absence of melanin in the skin, hair/fur/feathers, and pink pupils, however this has led many to assume that all albinos are pure white with pink pupils, which is not the case. In plants, albinism is characterised by partial or complete loss of chlorophyll pigments and incomplete differentiation of chloroplast membranes.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
BIO-105: Cellular biology and biochemistry for engineers
Basic course in biochemistry as well as cellular and molecular biology for non-life science students enrolling at the Master or PhD thesis level from various engineering disciplines. It reviews essent
BIO-109: Introduction to life sciences (for IC)
Ce cours présente les principes fondamentaux à l'œuvre dans les organismes vivants. Autant que possible, l'accent est mis sur les contributions de l'Informatique aux progrès des Sciences de la Vie.