Summary
Secret sharing (also called secret splitting) refers to methods for distributing a secret among a group, in such a way that no individual holds any intelligible information about the secret, but when a sufficient number of individuals combine their 'shares', the secret may be reconstructed. Whereas insecure secret sharing allows an attacker to gain more information with each share, secure secret sharing is 'all or nothing' (where 'all' means the necessary number of shares). In one type of secret sharing scheme there is one dealer and n players. The dealer gives a share of the secret to the players, but only when specific conditions are fulfilled will the players be able to reconstruct the secret from their shares. The dealer accomplishes this by giving each player a share in such a way that any group of t (for threshold) or more players can together reconstruct the secret but no group of fewer than t players can. Such a system is called a (t, n)-threshold scheme (sometimes it is written as an (n, t)-threshold scheme). Secret sharing was invented independently by Adi Shamir and George Blakley in 1979. Secret sharing schemes are ideal for storing information that is highly sensitive and highly important. Examples include: encryption keys, missile launch codes, and numbered bank accounts. Each of these pieces of information must be kept highly confidential, as their exposure could be disastrous; however, it is also critical that they should not be lost. Traditional methods for encryption are ill-suited for simultaneously achieving high levels of confidentiality and reliability. This is because when storing the encryption key, one must choose between keeping a single copy of the key in one location for maximum secrecy, or keeping multiple copies of the key in different locations for greater reliability. Increasing reliability of the key by storing multiple copies lowers confidentiality by creating additional attack vectors; there are more opportunities for a copy to fall into the wrong hands.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (7)
CS-457: Geometric computing
This course will cover mathematical concepts and efficient numerical methods for geometric computing. We will explore the beauty of geometry and develop algorithms to simulate and optimize 2D and 3D g
CS-721: Privacy at the communication layer
In this seminar course students will get in depth understanding of mechanisms for private communication. This will be done by reading important papers that will be analyzed in the class. Students will
COM-401: Cryptography and security
This course introduces the basics of cryptography. We review several types of cryptographic primitives, when it is safe to use them and how to select the appropriate security parameters. We detail how
Show more
Related publications (99)