Concept

# Calcul multipartite sécurisé

Résumé
Secure multi-party computation (also known as secure computation, multi-party computation (MPC) or privacy-preserving computation) is a subfield of cryptography with the goal of creating methods for parties to jointly compute a function over their inputs while keeping those inputs private. Unlike traditional cryptographic tasks, where cryptography assures security and integrity of communication or storage and the adversary is outside the system of participants (an eavesdropper on the sender and receiver), the cryptography in this model protects participants' privacy from each other. The foundation for secure multi-party computation started in the late 1970s with the work on mental poker, cryptographic work that simulates game playing/computational tasks over distances without requiring a trusted third party. Traditionally, cryptography was about concealing content, while this new type of computation and protocol is about concealing partial information about data while computing with the data from many sources, and correctly producing outputs. By the late 1980s, Michael Ben-Or, Shafi Goldwasser and Avi Wigderson, and independently David Chaum, Claude Crépeau, and Ivan Damgård, had published papers showing "how to securely compute any function in the secure channels setting". Special purpose protocols for specific tasks started in the late 1970s. Later, secure computation was formally introduced as secure two-party computation (2PC) in 1982 (for the so-called Millionaires' Problem, a specific problem which is a Boolean predicate), and in generality (for any feasible computation) in 1986 by Andrew Yao. The area is also referred to as Secure Function Evaluation (SFE). The two party case was followed by a generalization to the multi-party by Oded Goldreich, Silvio Micali, and Avi Wigderson. The computation is based on secret sharing of all the inputs and zero-knowledge proofs for a potentially malicious case, where the majority of honest players in the malicious adversary case assure that bad behavior is detected and the computation continues with the dishonest person eliminated or his input revealed.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.