In physics, Maxwell's equations in curved spacetime govern the dynamics of the electromagnetic field in curved spacetime (where the metric may not be the Minkowski metric) or where one uses an arbitrary (not necessarily Cartesian) coordinate system. These equations can be viewed as a generalization of the vacuum Maxwell's equations which are normally formulated in the local coordinates of flat spacetime. But because general relativity dictates that the presence of electromagnetic fields (or energy/matter in general) induce curvature in spacetime, Maxwell's equations in flat spacetime should be viewed as a convenient approximation.
When working in the presence of bulk matter, distinguishing between free and bound electric charges may facilitate analysis. When the distinction is made, they are called the macroscopic Maxwell's equations. Without this distinction, they are sometimes called the "microscopic" Maxwell's equations for contrast.
The electromagnetic field admits a coordinate-independent geometric description, and Maxwell's equations expressed in terms of these geometric objects are the same in any spacetime, curved or not. Also, the same modifications are made to the equations of flat Minkowski space when using local coordinates that are not rectilinear. For example, the equations in this article can be used to write Maxwell's equations in spherical coordinates. For these reasons, it may be useful to think of Maxwell's equations in Minkowski space as a special case of the general formulation.
In general relativity, the metric tensor is no longer a constant (like as in Examples of metric tensor) but can vary in space and time, and the equations of electromagnetism in a vacuum become
where is the density of the Lorentz force, is the reciprocal of the metric tensor , and is the determinant of the metric tensor. Notice that and are (ordinary) tensors, while , , and are tensor densities of weight +1. Despite the use of partial derivatives, these equations are invariant under arbitrary curvilinear coordinate transformations.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism (in particular, Maxwell's equations and the Lorentz force) in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another.
In relativistic physics, the electromagnetic stress–energy tensor is the contribution to the stress–energy tensor due to the electromagnetic field. The stress–energy tensor describes the flow of energy and momentum in spacetime. The electromagnetic stress–energy tensor contains the negative of the classical Maxwell stress tensor that governs the electromagnetic interactions. In free space and flat space–time, the electromagnetic stress–energy tensor in SI units is where is the electromagnetic tensor and where is the Minkowski metric tensor of metric signature (− + + +).
In electromagnetism, the electromagnetic tensor or electromagnetic field tensor (sometimes called the field strength tensor, Faraday tensor or Maxwell bivector) is a mathematical object that describes the electromagnetic field in spacetime. The field tensor was first used after the four-dimensional tensor formulation of special relativity was introduced by Hermann Minkowski. The tensor allows related physical laws to be written very concisely, and allows for the quantization of the electromagnetic field by Lagrangian formulation described below.
Le cours couvre deux grands chapitres de la physique: l'étude des fluides et l'électromagnétisme. Une introduction aux ondes est également faite pour pouvoir étudier les solutions des équations de l'h
Ce cours traite de l'électromagnétisme dans le vide et dans les milieux continus. A partir des principes fondamentaux de l'électromagnétisme, on établit les méthodes de résolution des équations de Max
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Accretion disks surrounding compact objects, and other environmental factors, deviate satellites from geodetic motion. Unfortunately, setting up the equations of motion for such relativistic trajectories is not as simple as in Newtonian mechanics. The prin ...
We introduce a high-order spline geometric approach for the initial boundary value problem for Maxwell's equations. The method is geometric in the sense that it discretizes in structure preserving fashion the two de Rham sequences of differential forms inv ...
We study two-point functions of local operators and their spectral representation in UV complete quantum field theories in generic dimensions focusing on conserved currents and the stress-tensor. We establish the connection with the central charges of the ...