Contrails (ˈkɒntreɪlz; short for "condensation trails") or vapor trails are line-shaped clouds produced by aircraft engine exhaust or changes in air pressure, typically at aircraft cruising altitudes several miles above the Earth's surface. Contrails are composed primarily of water, in the form of ice crystals. The combination of water vapor in aircraft engine exhaust and the low ambient temperatures that exist at high altitudes allows the formation of the trails. Impurities in the engine exhaust from the fuel, including sulfur compounds (0.05% by weight in jet fuel) provide some of the particles that can serve as nucleation sites for water droplet growth in the exhaust. If water droplets form, they might freeze to form ice particles that compose a contrail. Their formation can also be triggered by changes in air pressure in wingtip vortices or in the air over the entire wing surface. Contrails, and other clouds directly resulting from human activity, are collectively named homogenitus.
Depending on the temperature and humidity at the altitude the contrails form, they may be visible for only a few seconds or minutes, or may persist for hours and spread to be several miles wide, eventually resembling natural cirrus or altocumulus clouds. Persistent contrails are of particular interest to scientists because they increase the cloudiness of the atmosphere. The resulting cloud forms are formally described as homomutatus, and may resemble cirrus, cirrocumulus, or cirrostratus, and are sometimes called cirrus aviaticus. Some persistent spreading contrails contribute to climate change.
Engine exhaust is predominantly made up of water and carbon dioxide, the combustion products of hydrocarbon fuels. Many other chemical byproducts of incomplete hydrocarbon fuel combustion, including volatile organic compounds, inorganic gases, polycyclic aromatic hydrocarbons, oxygenated organics, alcohols, ozone and particles of soot have been observed at lower concentrations.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Analyzes the impact of Swiss air transport on climate change and the global aviation industry's commitment to achieving net-zero carbon emissions by 2050.
Aircraft engines produce gases, noise, and particulates from fossil fuel combustion, raising environmental concerns over their global effects and their effects on local air quality. Jet airliners contribute to climate change by emitting carbon dioxide (), the best understood greenhouse gas, and, with less scientific understanding, nitrogen oxides, contrails and particulates. Their radiative forcing is estimated at 1.3–1.4 that of alone, excluding induced cirrus cloud with a very low level of scientific understanding.
Climate change mitigation is action to limit climate change by reducing emissions of greenhouse gases or removing those gases from the atmosphere. The recent rise in global average temperature is mostly due to emissions from burning fossil fuels such as coal, oil, and natural gas. Mitigation can reduce emissions by transitioning to sustainable energy sources, conserving energy, and increasing efficiency. It is possible to remove carbon dioxide () from the atmosphere by enlarging forests, restoring wetlands and using other natural and technical processes.
In common usage, climate change describes global warming—the ongoing increase in global average temperature—and its effects on Earth's climate system. Climate change in a broader sense also includes previous long-term changes to Earth's climate. The current rise in global average temperature is more rapid than previous changes, and is primarily caused by humans burning fossil fuels. Fossil fuel use, deforestation, and some agricultural and industrial practices increase greenhouse gases, notably carbon dioxide and methane.
Accurately capturing cloud condensation nuclei (CCN) concentrations is key to understanding the aerosol-cloud interactions that continue to feature the highest uncertainty amongst numerous climate forcings. In situ CCN observations are sparse, and most non ...
New particle formation (NPF) substantially contributes to global cloud condensation nuclei (CCN), and their climate impacts. Individual NPF events are also thought to increase local CCN, cloud droplet number (CDN), and cloud albedo. High resolution simulat ...
Washington2024
, , , , ,
This dataset contains CCN concentrations at five supersaturation levels, averaged to 1 min time resolution, measured during the year-long Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition from October 2019 to Septem ...