A rocket engine nozzle is a propelling nozzle (usually of the de Laval type) used in a rocket engine to expand and accelerate combustion products to high supersonic velocities.
Simply: propellants pressurized by either pumps or high pressure ullage gas to anywhere between two and several hundred atmospheres are injected into a combustion chamber to burn, and the combustion chamber leads into a nozzle which converts the energy contained in high pressure, high temperature combustion products into kinetic energy by accelerating the gas to high velocity and near-ambient pressure.
Simple bell-shaped nozzles were developed in the 1500s. The de Laval nozzle was originally developed in the 19th century by Gustaf de Laval for use in steam turbines. It was first used in an early rocket engine developed by Robert Goddard, one of the fathers of modern rocketry. It has since been used in almost all rocket engines, including Walter Thiel's implementation, which made possible Germany's V-2 rocket.
The optimal size of a rocket engine nozzle is achieved when the exit pressure equals ambient (atmospheric) pressure, which decreases with increasing altitude. The reason for this is as follows: using a quasi-one-dimensional approximation of the flow, if ambient pressure is higher than the exit pressure, it decreases the net thrust produced by the rocket, which can be seen through a force-balance analysis. If ambient pressure is lower, while the force balance indicates that the thrust will increase, the isentropic Mach relations show that the area ratio of the nozzle could have been greater, which would result in a higher exit velocity of the propellant, increasing thrust. For rockets traveling from the Earth to orbit, a simple nozzle design is only optimal at one altitude, losing efficiency and wasting fuel at other altitudes.
Just past the throat, the pressure of the gas is higher than ambient pressure and needs to be lowered between the throat and the nozzle exit by expansion.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
Students will learn the principles of mechanics to enable a better understanding of physical phenomena, such as the kinematics and dyamics of point masses and solid bodies. Students will acquire the c
The main objective of the course is to provide an overview of space propulsion systems. The course will also describe the basic design principles of propulsion systems.
Rocket propellant is the reaction mass of a rocket. This reaction mass is ejected at the highest achievable velocity from a rocket engine to produce thrust. The energy required can either come from the propellants themselves, as with a chemical rocket, or from an external source, as with ion engines. Rockets create thrust by expelling mass rear-ward, at high velocity. The thrust produced can be calculated by multiplying the mass flow rate of the propellants by their exhaust velocity relative to the rocket (specific impulse).
A solar thermal rocket is a theoretical spacecraft propulsion system that would make use of solar power to directly heat reaction mass, and therefore would not require an electrical generator, like most other forms of solar-powered propulsion do. The rocket would only have to carry the means of capturing solar energy, such as concentrators and mirrors. The heated propellant would be fed through a conventional rocket nozzle to produce thrust.
Spacecraft electric propulsion (or just electric propulsion) is a type of spacecraft propulsion technique that uses electrostatic or electromagnetic fields to accelerate mass to high speed and thus generate thrust to modify the velocity of a spacecraft in orbit. The propulsion system is controlled by power electronics. Electric thrusters typically use much less propellant than chemical rockets because they have a higher exhaust speed (operate at a higher specific impulse) than chemical rockets.
Application of a single metal or alloy is often restricted by its properties from optimal combination of performance and cost. Therefore, there is a vast need of joining dissimilar metals for various applications in biomedical, aerospace, automobile and ma ...
Accretion disks surrounding compact objects, and other environmental factors, deviate satellites from geodetic motion. Unfortunately, setting up the equations of motion for such relativistic trajectories is not as simple as in Newtonian mechanics. The prin ...
AMER PHYSICAL SOC2022
Laser-induced forward transfer (LIFT) technique is an emerging micro additive manufacturing (AM) technique that has been widely used to print a variety of materials. Distinguished from other nozzle-based AM techniques, LIFT operates without the existence o ...