Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Atomic, molecular, and optical physics (AMO) is the study of matter–matter and light–matter interactions, at the scale of one or a few atoms and energy scales around several electron volts. The three areas are closely interrelated. AMO theory includes classical, semi-classical and quantum treatments. Typically, the theory and applications of emission, absorption, scattering of electromagnetic radiation (light) from excited atoms and molecules, analysis of spectroscopy, generation of lasers and masers, and the optical properties of matter in general, fall into these categories. Atomic physics and Molecular physics Atomic physics is the subfield of AMO that studies atoms as an isolated system of electrons and an atomic nucleus, while molecular physics is the study of the physical properties of molecules. The term atomic physics is often associated with nuclear power and nuclear bombs, due to the synonymous use of atomic and nuclear in standard English. However, physicists distinguish between atomic physics — which deals with the atom as a system consisting of a nucleus and electrons — and nuclear physics, which considers atomic nuclei alone. The important experimental techniques are the various types of spectroscopy. Molecular physics, while closely related to atomic physics, also overlaps greatly with theoretical chemistry, physical chemistry and chemical physics. Both subfields are primarily concerned with electronic structure and the dynamical processes by which these arrangements change. Generally this work involves using quantum mechanics. For molecular physics, this approach is known as quantum chemistry. One important aspect of molecular physics is that the essential atomic orbital theory in the field of atomic physics expands to the molecular orbital theory. Molecular physics is concerned with atomic processes in molecules, but it is additionally concerned with effects due to the molecular structure. Additionally to the electronic excitation states which are known from atoms, molecules are able to rotate and to vibrate.
Camille Sophie Brès, Marco Clementi, Jiaye Wu, Qian Li