In , two categories C and D are isomorphic if there exist functors F : C → D and G : D → C which are mutually inverse to each other, i.e. FG = 1D (the identity functor on D) and GF = 1C. This means that both the s and the morphisms of C and D stand in a one-to-one correspondence to each other. Two isomorphic categories share all properties that are defined solely in terms of category theory; for all practical purposes, they are identical and differ only in the notation of their objects and morphisms.
Isomorphism of categories is a very strong condition and rarely satisfied in practice. Much more important is the notion of equivalence of categories; roughly speaking, for an equivalence of categories we don't require that be equal to , but only naturally isomorphic to , and likewise that be naturally isomorphic to .
As is true for any notion of isomorphism, we have the following general properties formally similar to an equivalence relation:
any category C is isomorphic to itself
if C is isomorphic to D, then D is isomorphic to C
if C is isomorphic to D and D is isomorphic to E, then C is isomorphic to E.
A functor F : C → D yields an isomorphism of categories if and only if it is bijective on objects and on morphism sets. This criterion can be convenient as it avoids the need to construct the inverse functor G.
Consider a finite group G, a field k and the group algebra kG. The category of k-linear group representations of G is isomorphic to the category of left modules over kG. The isomorphism can be described as follows: given a group representation ρ : G → GL(V), where V is a vector space over k, GL(V) is the group of its k-linear automorphisms, and ρ is a group homomorphism, we turn V into a left kG module by defining for every v in V and every element Σ ag g in kG. Conversely, given a left kG module M, then M is a k vector space, and multiplication with an element g of G yields a k-linear automorphism of M (since g is invertible in kG), which describes a group homomorphism G → GL(M).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, the category of rings, denoted by Ring, is the whose objects are rings (with identity) and whose morphisms are ring homomorphisms (that preserve the identity). Like many categories in mathematics, the category of rings is , meaning that the class of all rings is proper. The category Ring is a meaning that the objects are sets with additional structure (addition and multiplication) and the morphisms are functions that preserve this structure.
In mathematics, especially in and homotopy theory, a groupoid (less often Brandt groupoid or virtual group) generalises the notion of group in several equivalent ways. A groupoid can be seen as a: Group with a partial function replacing the binary operation; in which every morphism is invertible. A category of this sort can be viewed as augmented with a unary operation on the morphisms, called inverse by analogy with group theory. A groupoid where there is only one object is a usual group.
In , a branch of abstract mathematics, an equivalence of categories is a relation between two that establishes that these categories are "essentially the same". There are numerous examples of categorical equivalences from many areas of mathematics. Establishing an equivalence involves demonstrating strong similarities between the mathematical structures concerned.
Inductive circuits and devices are ubiquitous and important design elements in many applications, such as magnetic drives, galvanometers, magnetic scanners, applying direct current (DC) magnetic fields to systems, radio frequency coils in nuclear magnetic ...
This dissertation is concerned with modular representation theory of finite groups, and more precisely, with the study of classes of representations, which we shall term relative endotrivial modules. Given a prime number p, a finite group G of order divisi ...
EPFL2012
K-Theory was originally defined by Grothendieck as a contravariant functor from a subcategory of schemes to abelian groups, known today as K0. The same kind of construction was then applied to other fields of mathematics, like spaces and (not necessarily c ...