In glaciology, an ice sheet, also known as a continental glacier, is a mass of glacial ice that covers surrounding terrain and is greater than . The only current ice sheets are in Antarctica and Greenland; during the Last Glacial Period at Last Glacial Maximum, the Laurentide Ice Sheet covered much of North America, the Weichselian ice sheet covered Northern Europe and the Patagonian Ice Sheet covered southern South America.
Ice sheets are bigger than ice shelves or alpine glaciers. Masses of ice covering less than 50,000 km2 are termed an ice cap. An ice cap will typically feed a series of glaciers around its periphery.
Although the surface is cold, the base of an ice sheet is generally warmer due to geothermal heat. In places, melting occurs and the melt-water lubricates the ice sheet so that it flows more rapidly. This process produces fast-flowing channels in the ice sheet — these are ice streams.
The present-day polar ice sheets are relatively young in geological terms. The Antarctic Ice Sheet first formed as a small ice cap (maybe several) in the early Oligocene, 33.9-23.0 Ma, but retreated and advanced many times until the Pliocene, 5.33-2.58Ma, when it came to occupy almost all of Antarctica. The Greenland ice sheet did not develop at all until the late Pliocene, but apparently developed very rapidly with the first continental glaciation. This had the unusual effect of allowing fossils of plants that once grew on present-day Greenland to be much better preserved than with the slowly forming Antarctic ice sheet.
Antarctic ice sheet
The Antarctic ice sheet is the largest single mass of ice on Earth. It covers an area of almost 14 million km2 (5.4 million mi2) and contains 30 million km3 of ice. Around 90% of the Earth's ice mass is in Antarctica, which, if melted, would cause sea levels to rise by . The continent-wide average surface temperature trend of Antarctica is positive and significant at >0.05 °C (0.09 °F)/decade since 1957.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A crevasse is a deep crack, that forms in a glacier or ice sheet that can be a few inches across to over 40 feet. Crevasses form as a result of the movement and resulting stress associated with the shear stress generated when two semi-rigid pieces above a plastic substrate have different rates of movement. The resulting intensity of the shear stress causes a breakage along the faces. Crevasses often have vertical or near-vertical walls, which can then melt and create seracs, arches, and other ice formations.
In common usage, climate change describes global warming—the ongoing increase in global average temperature—and its effects on Earth's climate system. Climate change in a broader sense also includes previous long-term changes to Earth's climate. The current rise in global average temperature is more rapid than previous changes, and is primarily caused by humans burning fossil fuels. Fossil fuel use, deforestation, and some agricultural and industrial practices increase greenhouse gases, notably carbon dioxide and methane.
Antarctica (ænˈtɑːrktᵻkə) is Earth's southernmost and least-populated continent. Situated almost entirely south of the Antarctic Circle and surrounded by the Southern Ocean (also known as the Antarctic Ocean), it contains the geographic South Pole. Antarctica is the fifth-largest continent, being about 40% larger than Europe, and has an area of . Most of Antarctica is covered by the Antarctic ice sheet, with an average thickness of . Antarctica is, on average, the coldest, driest, and windiest of the continents, and it has the highest average elevation.
The goal of this course is to give an introduction to the theory of distributions and cover the fundamental results of Sobolev spaces including fractional spaces that appear in the interpolation theor
The course equips students with a comprehensive scientific understanding of climate change covering a wide range of topics from physical principles, historical climate change, greenhouse gas emissions
This course covers principles of snow physics, snow hydrology, snow-atmosphere interaction and snow modeling. It transmits sound understanding of physical processes within the snow and at its interfac
Glacier-fed streams are the cold, ultra-oligotrophic, and unstable streams that are fed by glacial meltwater. Despite these extreme conditions, they harbour a diverse and abundant microbial diversity that develops into biofilms, covering the boulders and s ...
It is highly uncertain how the humidity flux between the snow surface and the atmosphere contributes to the surface mass balance (SMB) of the interior Greenland Ice Sheet (GrIS). Due to sparse observations, evaluations of the simulated humidity flux are li ...
Glacial moulins (cylindrical meltwater drainage shafts) provide valuable insights into glacier dynamics, but are inaccessible and hazardous environments for humans to study. Exploring them using passive sensor probes has revealed their complex geometry, wh ...