In the mathematical subject of geometric group theory, the growth rate of a group with respect to a symmetric generating set describes how fast a group grows. Every element in the group can be written as a product of generators, and the growth rate counts the number of elements that can be written as a product of length n.
Suppose G is a finitely generated group; and T is a finite symmetric set of generators
(symmetric means that if then ).
Any element can be expressed as a word in the T-alphabet
Consider the subset of all elements of G that can be expressed by such a word of length ≤ n
This set is just the closed ball of radius n in the word metric d on G with respect to the generating set T:
More geometrically, is the set of vertices in the Cayley graph with respect to T that are within distance n of the identity.
Given two nondecreasing positive functions a and b one can say that they are equivalent () if there is a constant C such that for all positive integers n,
for example if .
Then the growth rate of the group G can be defined as the corresponding equivalence class of the function
where denotes the number of elements in the set . Although the function depends on the set of generators T its rate of growth does not (see below) and therefore the rate of growth gives an invariant of a group.
The word metric d and therefore sets depend on the generating set T. However, any two such metrics are bilipschitz equivalent in the following sense: for finite symmetric generating sets E, F, there is a positive constant C such that
As an immediate corollary of this inequality we get that the growth rate does not depend on the choice of generating set.
If
for some we say that G has a polynomial growth rate.
The infimum of such ks is called the order of polynomial growth.
According to Gromov's theorem, a group of polynomial growth is a virtually nilpotent group, i.e. it has a nilpotent subgroup of finite index. In particular, the order of polynomial growth has to be a natural number and in fact .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Geometric group theory is an area in mathematics devoted to the study of finitely generated groups via exploring the connections between algebraic properties of such groups and topological and geometric properties of spaces on which these groups act (that is, when the groups in question are realized as geometric symmetries or continuous transformations of some spaces). Another important idea in geometric group theory is to consider finitely generated groups themselves as geometric objects.
In group theory, more precisely in geometric group theory, a hyperbolic group, also known as a word hyperbolic group or Gromov hyperbolic group, is a finitely generated group equipped with a word metric satisfying certain properties abstracted from classical hyperbolic geometry. The notion of a hyperbolic group was introduced and developed by . The inspiration came from various existing mathematical theories: hyperbolic geometry but also low-dimensional topology (in particular the results of Max Dehn concerning the fundamental group of a hyperbolic Riemann surface, and more complex phenomena in three-dimensional topology), and combinatorial group theory.
In the mathematical area of group theory, the Grigorchuk group or the first Grigorchuk group is a finitely generated group constructed by Rostislav Grigorchuk that provided the first example of a finitely generated group of intermediate (that is, faster than polynomial but slower than exponential) growth. The group was originally constructed by Grigorchuk in a 1980 paper and he then proved in a 1984 paper that this group has intermediate growth, thus providing an answer to an important open problem posed by John Milnor in 1968.
Let T-1, ... , T-d be homogeneous trees with degrees q(1) + 1, ... , q(d) + 1 >= 3; respectively. For each tree, let h : Tj -> Z be the Busemann function with respect to a fixed boundary point ( end). Its level sets are the horocycles. The horocyclic produ ...
We give a complete characterization of the locally compact groups that are nonelementary Gromov-hyperbolic and amenable. They coincide with the class of mapping tori of discrete or continuous one-parameter groups of compacting automorphisms. We moreover gi ...