In the mathematical subject of geometric group theory, the growth rate of a group with respect to a symmetric generating set describes how fast a group grows. Every element in the group can be written as a product of generators, and the growth rate counts the number of elements that can be written as a product of length n. Suppose G is a finitely generated group; and T is a finite symmetric set of generators (symmetric means that if then ). Any element can be expressed as a word in the T-alphabet Consider the subset of all elements of G that can be expressed by such a word of length ≤ n This set is just the closed ball of radius n in the word metric d on G with respect to the generating set T: More geometrically, is the set of vertices in the Cayley graph with respect to T that are within distance n of the identity. Given two nondecreasing positive functions a and b one can say that they are equivalent () if there is a constant C such that for all positive integers n, for example if . Then the growth rate of the group G can be defined as the corresponding equivalence class of the function where denotes the number of elements in the set . Although the function depends on the set of generators T its rate of growth does not (see below) and therefore the rate of growth gives an invariant of a group. The word metric d and therefore sets depend on the generating set T. However, any two such metrics are bilipschitz equivalent in the following sense: for finite symmetric generating sets E, F, there is a positive constant C such that As an immediate corollary of this inequality we get that the growth rate does not depend on the choice of generating set. If for some we say that G has a polynomial growth rate. The infimum of such ks is called the order of polynomial growth. According to Gromov's theorem, a group of polynomial growth is a virtually nilpotent group, i.e. it has a nilpotent subgroup of finite index. In particular, the order of polynomial growth has to be a natural number and in fact .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Séances de cours associées (1)
Concepts associés (4)
Théorie géométrique des groupes
La théorie géométrique des groupes est un domaine des mathématiques pour l'étude des groupes de type fini à travers les connexions entre les propriétés algébriques de ces groupes et les propriétés topologiques et géométriques des espaces sur lesquels ils opèrent. Les groupes sont vus comme des ensembles de symétries ou d'applications continues sur ces espaces. Une autre idée importante de la théorie géométrique des groupes est de considérer les groupes de type fini eux-mêmes comme des objets géométriques, généralement via le graphe de Cayley du groupe étudié.
Groupe hyperbolique
En théorie géométrique des groupes — une branche des mathématiques — un groupe hyperbolique, ou groupe à courbure négative, est un groupe de type fini muni d'une métrique des mots vérifiant certaines propriétés caractéristiques de la géométrie hyperbolique. Cette notion a été introduite et développée par Mikhaïl Gromov au début des années 1980. Il avait remarqué que beaucoup de résultats de Max Dehn concernant le groupe fondamental d'une surface de Riemann hyperbolique ne reposaient pas sur le fait qu'elle soit de 2 ni même que ce soit une variété, mais restaient vrais dans un contexte beaucoup plus général.
Groupe de Grigorchuk
En mathématiques et notamment en théorie des groupes, le groupe de Grigorchuk, aussi appelé le premier groupe de Grigorchuk, est un groupe finiment engendré construit par Rostislav Grigorchuk et qui fournit le premier exemple d'un groupe finiment engendré de croissance intermédiaire, c'est-à-dire plus rapide qu'un polynôme et plus lent qu'une exponentielle. Le groupe de Grigorchuk est aussi le premier exemple d'un groupe moyennable qui n’est pas élémentairement moyennable, ce qui répond à une question de Mahlon Day posée en 1957.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.