In group theory, more precisely in geometric group theory, a hyperbolic group, also known as a word hyperbolic group or Gromov hyperbolic group, is a finitely generated group equipped with a word metric satisfying certain properties abstracted from classical hyperbolic geometry. The notion of a hyperbolic group was introduced and developed by . The inspiration came from various existing mathematical theories: hyperbolic geometry but also low-dimensional topology (in particular the results of Max Dehn concerning the fundamental group of a hyperbolic Riemann surface, and more complex phenomena in three-dimensional topology), and combinatorial group theory. In a very influential (over 1000 citations ) chapter from 1987, Gromov proposed a wide-ranging research program. Ideas and foundational material in the theory of hyperbolic groups also stem from the work of George Mostow, William Thurston, James W. Cannon, Eliyahu Rips, and many others. Let be a finitely generated group, and be its Cayley graph with respect to some finite set of generators. The set is endowed with its graph metric (in which edges are of length one and the distance between two vertices is the minimal number of edges in a path connecting them) which turns it into a length space. The group is then said to be hyperbolic if is a hyperbolic space in the sense of Gromov. Shortly, this means that there exists a such that any geodesic triangle in is -thin, as illustrated in the figure on the right (the space is then said to be -hyperbolic). A priori this definition depends on the choice of a finite generating set . That this is not the case follows from the two following facts: the Cayley graphs corresponding to two finite generating sets are always quasi-isometric one to the other; any geodesic space which is quasi-isometric to a geodesic Gromov-hyperbolic space is itself Gromov-hyperbolic. Thus we can legitimately speak of a finitely generated group being hyperbolic without referring to a generating set.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (5)
ME-716: Similarity and Transport Phenomena in Fluid
The course is an introduction to symmetry analysis in fluid mechanics. The student will learn how to find similarity and travelling-wave solutions to partial differential equations used in fluid and c
MATH-213: Differential geometry I - curves and surfaces
Ce cours est une introduction à la géométrie différentielle classique des courbes et des surfaces, principalement dans le plan et l'espace euclidien.
MATH-410: Riemann surfaces
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
Show more
Related lectures (20)
Stereographic Projection and Metric Tensors
Explores stereographic projection and metric tensors on hyperbolic planes, emphasizing isometry and conforming models.
Unit Tangent Bundle of Hyperbolic Spaces
Covers the unit tangent bundle of hyperbolic spaces and geodesic flows.
Research Methods: Setting Up Experiments and Interview Guides
Explores setting up experiments, interview guides, and self-experimentation in research methods.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.