The Berry paradox is a self-referential paradox arising from an expression like "The smallest positive integer not definable in under sixty letters" (a phrase with fifty-seven letters).
Bertrand Russell, the first to discuss the paradox in print, attributed it to G. G. Berry (1867–1928), a junior librarian at Oxford's Bodleian Library. Russell called Berry "the only person in Oxford who understood mathematical logic". The paradox was called "Richard's paradox" by Jean-Yves Girard.
Consider the expression:
"The smallest positive integer not definable in under sixty letters."
Since there are only twenty-six letters in the English alphabet, there are finitely many phrases of under sixty letters, and hence finitely many positive integers that are defined by phrases of under sixty letters. Since there are infinitely many positive integers, this means that there are positive integers that cannot be defined by phrases of under sixty letters. If there are positive integers that satisfy a given property, then there is a smallest positive integer that satisfies that property; therefore, there is a smallest positive integer satisfying the property "not definable in under sixty letters". This is the integer to which the above expression refers. But the above expression is only fifty-seven letters long, therefore it is definable in under sixty letters, and is not the smallest positive integer not definable in under sixty letters, and is not defined by this expression. This is a paradox: there must be an integer defined by this expression, but since the expression is self-contradictory (any integer it defines is definable in under sixty letters), there cannot be any integer defined by it.
Perhaps another helpful analogy to Berry's Paradox would be the phrase "indescribable feeling". If the feeling is indeed indescribable, then no description of the feeling would be true. But if the word "indescribable" communicates something about the feeling, then it may be considered a description: this is self-contradictory.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In philosophy and logic, the classical liar paradox or liar's paradox or antinomy of the liar is the statement of a liar that they are lying: for instance, declaring that "I am lying". If the liar is indeed lying, then the liar is telling the truth, which means the liar just lied. In "this sentence is a lie" the paradox is strengthened in order to make it amenable to more rigorous logical analysis. It is still generally called the "liar paradox" although abstraction is made precisely from the liar making the statement.
Gödel's incompleteness theorems are two theorems of mathematical logic that are concerned with the limits of in formal axiomatic theories. These results, published by Kurt Gödel in 1931, are important both in mathematical logic and in the philosophy of mathematics. The theorems are widely, but not universally, interpreted as showing that Hilbert's program to find a complete and consistent set of axioms for all mathematics is impossible. The first incompleteness theorem states that no consistent system of axioms whose theorems can be listed by an effective procedure (i.
A paradox is a logically self-contradictory statement or a statement that runs contrary to one's expectation. It is a statement that, despite apparently valid reasoning from true premises, leads to a seemingly self-contradictory or a logically unacceptable conclusion. A paradox usually involves contradictory-yet-interrelated elements that exist simultaneously and persist over time. They result in "persistent contradiction between interdependent elements" leading to a lasting "unity of opposites".
Covers examples of relation composition, Cartesian product, and injective functions.
Introduces sets and functions, covering union, intersection, complement, functions terminology, and set operations analogies.
Explores the existence of mathematical objects, truth of propositions, and knowledge about them, covering Platonism, Intuitionism, Structuralism, Nominalism, Logicism, and Formalism.
In a dramatic crisis context, Lisbon reveals itself as an attractive and dynamic city of alternative bustling creativity. Trying to understand this paradox, I analyse two successful “alternative cultural spaces”: Lx Factory and Pensão Amor. Urban strategie ...
2012
In Europe, for the past several decades, we have observed that local urban transportation policies in many cities have been geared at reducing automobile use; at the same time, mobility has become a key aspect of social integration. The massive development ...
Newcomb's problem is viewed as a dynamic game with an agent and a superior being as players. Depending on whether or not a risk-neutral agent's confidence in the superior being, as measured by a subjective probability assigned to the move order, exceeds a ...