Summary
Neurofeedback is a type of biofeedback that focuses on the neuronal activity of the brain. The training method is based on reward learning (operant conditioning) where a real-time feedback provided to the trainee is supposed to reinforce desired brain activity or inhibit unfavorable activity patterns. Different mental states (for example, concentration, relaxation, creativity, distractibility, rumination, etc.) are associated with different brain activities or brain states. Similarly, symptoms of mental or brain-related health issues are associated with neuronal overarousal, underarousal, disinhibition, or instability. Thus, neurofeedback tries to yield symptom relief through an improved regulation of neuronal activity. Apart from being a therapeutic approach, neurofeedback is increasingly used for healthy people as well, aiming at improved cognitive regulation skills according to individual goals and needs. There are various methods of providing feedback of neurological activity. The most common application uses the measurement of electroencephalography (EEG), where the electrical activity of the brain is recorded by electrodes placed on the scalp. Other, less usual methods, rely on functional magnetic resonance (fMRI), functional near-infrared spectroscopy (fNIRS), or hemoencephalography biofeedback (HEG). In 1898, Edward Thorndike formulated the law of effect. In his work, he theorized that behavior is shaped by satisfying or discomforting consequences. This set the foundation for operant conditioning. In 1924, the German psychiatrist Hans Berger connected several electrodes to a patient's scalp and detected a small current by using a ballistic galvanometer. In his subsequent studies, Berger analyzed EEGs qualitatively, but in 1932, G. Dietsch applied Fourier analysis to seven EEG records and later became the first researcher to apply quantitative EEG (QEEG). In 1950, Neal E. Miller of Yale University was able to train mice to regulate their heartbeat frequency. Later on, he continued his work with humans, training them through auditory feedback.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (4)
NX-421: Neural signals and signal processing
Understanding, processing, and analysis of signals and images obtained from the central and peripheral nervous system
NX-422: Neural interfaces
Neural interfaces (NI) are bioelectronic systems that interface the nervous system to digital technologies. This course presents their main building blocks (transducers, instrumentation & communicatio
EE-519: Bioelectronics and biomedical microelectronics
The course covers the fundaments of bioelectronics and integrated microelectronics for biomedical and implantable systems. Issues and trade-offs at the circuit and systems levels of invasive microelec
Show more
Related lectures (33)
Neural Signals and Signal Processing
Explores neural activity, electromagnetic signals, EEG, MEG, signal properties, noise sources, analysis methods, and decoding techniques.
Motor Neuroprosthetics: Brain-Machine Interfaces
Explores Brain-Machine Interfaces for motor control and communication using neural signals.
Observing the Brain: Neuroimaging Basics
Explores neuroimaging basics, brain network scales, connectivity, history, and physics, emphasizing the importance of understanding data at different scales.
Show more
Related publications (293)
Related concepts (2)
Electroencephalography
Electroencephalography (EEG) is a method to record an electrogram of the spontaneous electrical activity of the brain. The biosignals detected by EEG have been shown to represent the postsynaptic potentials of pyramidal neurons in the neocortex and allocortex. It is typically non-invasive, with the EEG electrodes placed along the scalp (commonly called "scalp EEG") using the International 10–20 system, or variations of it. Electrocorticography, involving surgical placement of electrodes, is sometimes called "intracranial EEG".
Delta wave
Delta waves are high amplitude neural oscillations with a frequency between 0.5 and 4 hertz. Delta waves, like other brain waves, can be recorded with electroencephalography (EEG) and are usually associated with the deep stage 3 of NREM sleep, also known as slow-wave sleep (SWS), and aid in characterizing the depth of sleep. Suppression of delta waves leads to inability of body rejuvenation, brain revitalization and poor sleep. "Delta waves" were first described in the 1930s by W.