Environmental radioactivity is not limited to actinides; non-actinides such as radon and radium are of note. While all actinides are radioactive, there are a lot of actinides or actinide-relating minerals in the Earth's crust such as uranium and thorium. These minerals are helpful in many ways, such as carbon-dating, most detectors, X-rays, and more.
Generally, ingested insoluble actinide compounds, such as high-fired uranium dioxide and mixed oxide (MOX) fuel, will pass through the digestive system with little effect since they cannot dissolve and be absorbed by the body. Inhaled actinide compounds, however, will be more damaging as they remain in the lungs and irradiate the lung tissue.
Ingested low-fired oxides and soluble salts such as nitrate can be absorbed into the blood stream. If they are inhaled then it is possible for the solid to dissolve and leave the lungs. Hence, the dose to the lungs will be lower for the soluble form.
Actinium can be naturally found in traces in uranium ore as 227Ac, an α and β emitter with half-life 21.773 years. Uranium ore contains about 0.2 mg of actinium per ton of uranium. It is more commonly made in milligram amounts by neutron irradiation of 226Ra in a nuclear reactor. Natural actinium almost exclusively consists of one isotope, 227Ac, with only minute traces of other shorter-lived isotopes (225Ac and 228Ac) occurring in other decay chains.
In India, a large amount of thorium ore can be found in the form of monazite in placer deposits of the Western and Eastern coastal dune sands, particularly in the Tamil Nadu coastal areas. The residents of this area are exposed to a naturally occurring radiation dose ten times higher than the worldwide average.
Thorium is found at low levels in most rocks and soils, where it is about three times more abundant than uranium and about as abundant as lead. On average, soil commonly contains approximately 6 parts per million (ppm) thorium. Thorium occurs in several minerals; the most common is the rare earth-thorium-phosphate mineral monazite, which contains up to 12% thorium oxide.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course will provide a synopsis of the chemistry of f elements (lanthanides and actinides) covering structure, bonding, redox and spectroscopic properties and reactivity. The coordination and organ
In this course, one acquires an understanding of the basic neutronics interactions occurring in a nuclear fission reactor as well as the conditions for establishing and controlling a nuclear chain rea
This course is intended to understand the engineering design of nuclear power plants using the basic principles of reactor physics, fluid flow and heat transfer. This course includes the following: Re
Uranium-236 (236U) is an isotope of uranium that is neither fissile with thermal neutrons, nor very good fertile material, but is generally considered a nuisance and long-lived radioactive waste. It is found in spent nuclear fuel and in the reprocessed uranium made from spent nuclear fuel. The fissile isotope uranium-235 fuels most nuclear reactors. When 235U absorbs a thermal neutron, one of two processes can occur. About 82% of the time, it will fission; about 18% of the time, it will not fission, instead emitting gamma radiation and yielding 236U.
Plutonium is a radioactive chemical element with the symbol Pu and atomic number 94. It is an actinide metal of silvery-gray appearance that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibits six allotropes and four oxidation states. It reacts with carbon, halogens, nitrogen, silicon, and hydrogen. When exposed to moist air, it forms oxides and hydrides that can expand the sample up to 70% in volume, which in turn flake off as a powder that is pyrophoric.
The nuclear fuel cycle, also called nuclear fuel chain, is the progression of nuclear fuel through a series of differing stages. It consists of steps in the front end, which are the preparation of the fuel, steps in the service period in which the fuel is used during reactor operation, and steps in the back end, which are necessary to safely manage, contain, and either reprocess or dispose of spent nuclear fuel.
The modeling of non-covalent interactions, solvation effects, and chemical reactions in complex molecular environment is a challenging task. Current state-of-the-art approaches often rely on static computations using implicit solvent models and harmonic ap ...
EPFL2022
, , ,
Reduction of uranyl(VI) to U-V and to U-IV is important in uranium environmental migration and remediation processes. The anaerobic reduction of a uranyl U-VI complex supported by a picolinate ligand in both organic and aqueous media is presented. The [(UO ...
The production of radioisotope beams at the ISOLDE (Isotope Separator OnLine DEvice) facility at CERN is achieved by irradiating target materials (e.g. uranium carbides and metal foils) with protons. The materials are usually operated at temperatures above ...