In commutative algebra, a Gorenstein local ring is a commutative Noetherian local ring R with finite injective dimension as an R-module. There are many equivalent conditions, some of them listed below, often saying that a Gorenstein ring is self-dual in some sense.
Gorenstein rings were introduced by Grothendieck in his 1961 seminar (published in ). The name comes from a duality property of singular plane curves studied by (who was fond of claiming that he did not understand the definition of a Gorenstein ring). The zero-dimensional case had been studied by . and publicized the concept of Gorenstein rings.
Frobenius rings are noncommutative analogs of zero-dimensional Gorenstein rings. Gorenstein schemes are the geometric version of Gorenstein rings.
For Noetherian local rings, there is the following chain of inclusions.
A Gorenstein ring is a commutative Noetherian ring such that each localization at a prime ideal is a Gorenstein local ring, as defined below. A Gorenstein ring is in particular Cohen–Macaulay.
One elementary characterization is: a Noetherian local ring R of dimension zero (equivalently, with R of finite length as an R-module) is Gorenstein if and only if HomR(k, R) has dimension 1 as a k-vector space, where k is the residue field of R. Equivalently, R has simple socle as an R-module. More generally, a Noetherian local ring R is Gorenstein if and only if there is a regular sequence a1,...,an in the maximal ideal of R such that the quotient ring R/( a1,...,an) is Gorenstein of dimension zero.
For example, if R is a commutative graded algebra over a field k such that R has finite dimension as a k-vector space, R = k ⊕ R1 ⊕ ... ⊕ Rm, then R is Gorenstein if and only if it satisfies Poincaré duality, meaning that the top graded piece Rm has dimension 1 and the product Ra × Rm−a → Rm is a perfect pairing for every a.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, a duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one fashion, often (but not always) by means of an involution operation: if the dual of A is B, then the dual of B is A. Such involutions sometimes have fixed points, so that the dual of A is A itself. For example, Desargues' theorem is self-dual in this sense under the standard duality in projective geometry. In mathematical contexts, duality has numerous meanings.
In commutative algebra, a regular sequence is a sequence of elements of a commutative ring which are as independent as possible, in a precise sense. This is the algebraic analogue of the geometric notion of a complete intersection. For a commutative ring R and an R-module M, an element r in R is called a non-zero-divisor on M if r m = 0 implies m = 0 for m in M. An M-regular sequence is a sequence r1, ..., rd in R such that ri is a not a zero-divisor on M/(r1, ..., ri-1)M for i = 1, ..., d.
In mathematics, coherent duality is any of a number of generalisations of Serre duality, applying to coherent sheaves, in algebraic geometry and complex manifold theory, as well as some aspects of commutative algebra that are part of the 'local' theory. The historical roots of the theory lie in the idea of the adjoint linear system of a linear system of divisors in classical algebraic geometry. This was re-expressed, with the advent of sheaf theory, in a way that made an analogy with Poincaré duality more apparent.
Algebraic K-theory, which to any ring R associates a sequence of groups, can be viewed as a theory of linear algebra over an arbitrary ring. We will study in detail the first two of these groups and a
We give a new proof of a sumset conjecture of Furstenberg that was first proved by Hochman and Shmerkin in 2012: if logr/logs is irrational and X and Y are ×r- and ×s-invariant subsets of [0,1], respectively, then $\dim_\text{ ...
This paper is devoted to the study of multigraded algebras and multigraded linear series. For an NsNs-graded algebra AA, we define and study its volume function FA:N+s -> RFA:N+s→R, which computes the ...
We construct a modular desingularisation of (M) over bar (2,n)(P-r, d)(main). The geometry of Gorenstein singularities of genus two leads us to consider maps from prestable admissible covers; with this enhanced logarithmic structure, it is possible to desi ...