In mathematics, a duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one fashion, often (but not always) by means of an involution operation: if the dual of A is B, then the dual of B is A. Such involutions sometimes have fixed points, so that the dual of A is A itself. For example, Desargues' theorem is self-dual in this sense under the standard duality in projective geometry. In mathematical contexts, duality has numerous meanings. It has been described as "a very pervasive and important concept in (modern) mathematics" and "an important general theme that has manifestations in almost every area of mathematics". Many mathematical dualities between objects of two types correspond to pairings, bilinear functions from an object of one type and another object of the second type to some family of scalars. For instance, linear algebra duality corresponds in this way to bilinear maps from pairs of vector spaces to scalars, the duality between distributions and the associated test functions corresponds to the pairing in which one integrates a distribution against a test function, and Poincaré duality corresponds similarly to intersection number, viewed as a pairing between submanifolds of a given manifold. From a viewpoint, duality can also be seen as a functor, at least in the realm of vector spaces. This functor assigns to each space its dual space, and the construction assigns to each arrow f: V → W its dual f^∗: W^∗ → V^∗. In the words of Michael Atiyah, Duality in mathematics is not a theorem, but a "principle". The following list of examples shows the common features of many dualities, but also indicates that the precise meaning of duality may vary from case to case. A simple, maybe the most simple, duality arises from considering subsets of a fixed set S. To any subset ⊆ , the complement ^ consists of all those elements in S that are not contained in A. It is again a subset of S. Taking the complement has the following properties: Applying it twice gives back the original set, i.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (28)
CS-412: Software security
This course focuses on software security fundamentals, secure coding guidelines and principles, and advanced software security concepts. Students learn to assess and understand threats, learn how to d
MATH-726: Working group in Topology I
The theme of the working group varies from year to year. Examples of recent topics studied include: Galois theory of ring spectra, duality in algebra and topology, and topological algebraic geometry.
MATH-726(2): Working group in Topology II
The theme of the working group varies from year to year. Examples of recent topics studied include: Galois theory of ring spectra, duality in algebra and topology, topological algebraic geometry and t
Afficher plus
Séances de cours associées (85)
Espaces Normés
Couvre les espaces normés, les espaces doubles, les espaces de Banach, les espaces de Hilbert, la convergence faible et forte, les espaces réflexifs et le théorème de Hahn-Banach.
La dualité dans la programmation linéaire
Explore le concept de dualité dans la programmation linéaire, en discutant de la relation entre les problèmes primaires et duaux.
Dualité de programmation linéaire
Explore la dualité de programmation linéaire, couvrant la dualité faible, la dualité forte, l'interprétation des multiplicateurs de Lagrange et les contraintes d'optimisation.
Afficher plus
Publications associées (72)
Concepts associés (34)
Coherent duality
In mathematics, coherent duality is any of a number of generalisations of Serre duality, applying to coherent sheaves, in algebraic geometry and complex manifold theory, as well as some aspects of commutative algebra that are part of the 'local' theory. The historical roots of the theory lie in the idea of the adjoint linear system of a linear system of divisors in classical algebraic geometry. This was re-expressed, with the advent of sheaf theory, in a way that made an analogy with Poincaré duality more apparent.
Corps de nombres
En mathématiques, un corps de nombres algébriques (ou simplement corps de nombres) est une extension finie K du corps Q des nombres rationnels. En particulier, c'est une extension algébrique : tous les éléments de K sont des nombres algébriques, dont le degré divise le degré de l'extension. C'est aussi une extension séparable car Q est de caractéristique nulle donc parfait. Tout sous-corps de C engendré par un nombre fini de nombres algébriques est un corps de nombres.
Géométrie non commutative
La géométrie non commutative, développée par Alain Connes, est une branche des mathématiques, et plus précisément un type de géométrie algébrique distincte de la géométrie algébrique telle qu'on l'entend habituellement (celle développée par Alexandre Grothendieck), car s'intéressant à des objets définis à partir de structures algébriques non commutatives. L'idée principale est qu'un espace au sens de la géométrie usuelle peut être décrit par l'ensemble des fonctions numériques définies sur cet espace.
Afficher plus