In biochemistry, a phosphatase is an enzyme that uses water to cleave a phosphoric acid monoester into a phosphate ion and an alcohol. Because a phosphatase enzyme catalyzes the hydrolysis of its substrate, it is a subcategory of hydrolases. Phosphatase enzymes are essential to many biological functions, because phosphorylation (e.g. by protein kinases) and dephosphorylation (by phosphatases) serve diverse roles in cellular regulation and signaling. Whereas phosphatases remove phosphate groups from molecules, kinases catalyze the transfer of phosphate groups to molecules from ATP. Together, kinases and phosphatases direct a form of post-translational modification that is essential to the cell's regulatory network.
Phosphatase enzymes are not to be confused with phosphorylase enzymes, which catalyze the transfer of a phosphate group from hydrogen phosphate to an acceptor. Due to their prevalence in cellular regulation, phosphatases are an area of interest for pharmaceutical research.
Phosphatases catalyze the hydrolysis of a phosphomonoester, removing a phosphate moiety from the substrate. Water is split in the reaction, with the -OH group attaching to the phosphate ion, and the H+ protonating the hydroxyl group of the other product. The net result of the reaction is the destruction of a phosphomonoester and the creation of both a phosphate ion and a molecule with a free hydroxyl group.
Phosphatases are able to dephosphorylate seemingly different sites on their substrates with great specificity. Identifying the "phosphatase code," that is, the mechanisms and rules that govern substrate recognition for phosphatases, is still a work in progress, but the first comparative analysis of all the protein phosphatases encoded across nine eukaryotic 'phosphatome' genomes is now available. Studies reveal that so called "docking interactions" play a significant role in substrate binding. A phosphatase recognizes and interacts with various motifs (elements of secondary structure) on its substrate; these motifs bind with low affinity to docking sites on the phosphatase, which are not contained within its active site.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In biology, cell signaling (cell signalling in British English) or cell communication is the ability of a cell to receive, process, and transmit signals with its environment and with itself. Cell signaling is a fundamental property of all cellular life in prokaryotes and eukaryotes. Signals that originate from outside a cell (or extracellular signals) can be physical agents like mechanical pressure, voltage, temperature, light, or chemical signals (e.g., small molecules, peptides, or gas).
A cofactor is a non-protein chemical compound or metallic ion that is required for an enzyme's role as a catalyst (a catalyst is a substance that increases the rate of a chemical reaction). Cofactors can be considered "helper molecules" that assist in biochemical transformations. The rates at which these happen are characterized in an area of study called enzyme kinetics. Cofactors typically differ from ligands in that they often derive their function by remaining bound.
In molecular biology, biosynthesis is a multi-step, enzyme-catalyzed process where substrates are converted into more complex products in living organisms. In biosynthesis, simple compounds are modified, converted into other compounds, or joined to form macromolecules. This process often consists of metabolic pathways. Some of these biosynthetic pathways are located within a single cellular organelle, while others involve enzymes that are located within multiple cellular organelles.
Biochemistry is a key discipline in the Life Sciences. Biological Chemistry I and II are two tightly interconnected courses that aims to understand in molecular terms the processes that make life poss
Biochemistry is a key discipline for the Life Sciences. Biological Chemistry I and II are two tightly interconnected courses that aim to describe and understand in molecular terms the processes that m
Covers posttranslational modifications, focusing on phosphorylation and protein phosphatases, and explains kinase specificity assays and the optimal phosphorylation consensus.
The ratio of nuclear content to cytoplasmic volume (N/C ratio) is a key regulator driving the maternal-to -zy-gotic transition in most animal embryos. Altering this ratio often impacts zygotic genome activation and de-regulates the timing and outcome of em ...
The Ppz enzymes are Ser/Thr protein phosphatases present only in fungi that are characterized by a highly conserved C-terminal catalytic region, related to PP1c phosphatases, and a more divergent N-terminal extension. In Saccharomyces cerevisiae, Ppz phosp ...
The contraction and relaxation of the heart is controlled by stimulation of the beta 1-adrenoreceptor (AR) signaling cascade, which leads to activation of cAMP-dependent protein kinase (PKA) and subsequent cardiac protein phosphorylation. Phosphorylation i ...