Concept

Companion matrix

In linear algebra, the Frobenius companion matrix of the monic polynomial is the square matrix defined as Some authors use the transpose of this matrix, , which is more convenient for some purposes such as linear recurrence relations (see below). is defined from the coefficients of , while the characteristic polynomial as well as the minimal polynomial of are equal to . In this sense, the matrix and the polynomial are "companions". Any matrix A with entries in a field F has characteristic polynomial , which in turn has companion matrix . These matrices are related as follows. The following statements are equivalent: A is similar over F to , i.e. A can be conjugated to its companion matrix by matrices in GLn(F); the characteristic polynomial coincides with the minimal polynomial of A , i.e. the minimal polynomial has degree n ; the linear mapping makes a cyclic -module, having a basis of the form ; or equivalently as -modules. If the above hold, one says that A is non-derogatory. Not every square matrix is similar to a companion matrix, but every square matrix is similar to a block diagonal matrix made of companion matrices. If we also demand that the polynomial of each diagonal block divides the next one, they are uniquely determined by A, and this gives the rational canonical form of A. The roots of the characteristic polynomial are the eigenvalues of . If there are n distinct eigenvalues , then is diagonalizable as , where D is the diagonal matrix and V is the Vandermonde matrix corresponding to the λ's: Indeed, an easy computation shows that the transpose has eigenvectors with , which follows from . Thus, its diagonalizing change of basis matrix is , meaning , and taking the transpose of both sides gives . We can read the eigenvectors of with from the equation : they are the column vectors of the inverse Vandermonde matrix . This matrix is known explicitly, giving the eignevectors , with coordinates equal to the coefficients of the Lagrange polynomials Alternatively, the scaled eigenvectors have simpler coefficients.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (8)
MATH-111(e): Linear Algebra
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.
MATH-111(f): Linear Algebra
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.
COM-502: Dynamical system theory for engineers
Linear and nonlinear dynamical systems are found in all fields of science and engineering. After a short review of linear system theory, the class will explain and develop the main tools for the quali
Show more
Related publications (10)
Related concepts (7)
Frobenius normal form
In linear algebra, the Frobenius normal form or rational canonical form of a square matrix A with entries in a field F is a canonical form for matrices obtained by conjugation by invertible matrices over F. The form reflects a minimal decomposition of the vector space into subspaces that are cyclic for A (i.e., spanned by some vector and its repeated images under A). Since only one normal form can be reached from a given matrix (whence the "canonical"), a matrix B is similar to A if and only if it has the same rational canonical form as A.
Eigenvalues and eigenvectors
In linear algebra, an eigenvector (ˈaɪgənˌvɛktər) or characteristic vector of a linear transformation is a nonzero vector that changes at most by a constant factor when that linear transformation is applied to it. The corresponding eigenvalue, often represented by , is the multiplying factor. Geometrically, a transformation matrix rotates, stretches, or shears the vectors it acts upon. The eigenvectors for a linear transformation matrix are the set of vectors that are only stretched, with no rotation or shear.
Minimal polynomial (linear algebra)
In linear algebra, the minimal polynomial μA of an n × n matrix A over a field F is the monic polynomial P over F of least degree such that P(A) = 0. Any other polynomial Q with Q(A) = 0 is a (polynomial) multiple of μA. The following three statements are equivalent: λ is a root of μA, λ is a root of the characteristic polynomial χA of A, λ is an eigenvalue of matrix A. The multiplicity of a root λ of μA is the largest power m such that ker((A − λIn)m) strictly contains ker((A − λIn)m−1).
Show more
Related MOOCs (9)
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 2)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Show more