A triple bond in chemistry is a chemical bond between two atoms involving six bonding electrons instead of the usual two in a covalent single bond. Triple bonds are stronger than the equivalent single bonds or double bonds, with a bond order of three. The most common triple bond is in a nitrogen N2 molecule; the second most common is that between two carbon atoms, which can be found in alkynes. Other functional groups containing a triple bond are cyanides and isocyanides. Some diatomic molecules, such as dinitrogen and carbon monoxide, are also triple bonded. In skeletal formulae the triple bond is drawn as three parallel lines (≡) between the two connected atoms.
The types of bonding can be explained in terms of orbital hybridization. In the case of acetylene each carbon atom has two sp-orbitals and two p-orbitals. The two sp-orbitals are linear with 180° angles and occupy the x-axis (cartesian coordinate system). The p-orbitals are perpendicular on the y-axis and the z-axis. When the carbon atoms approach each other, the sp orbitals overlap to form an sp-sp sigma bond. At the same time the pz-orbitals approach and together they form a pz-pz pi-bond. Likewise, the other pair of py-orbitals form a py-py pi-bond. The result is formation of one sigma bond and two pi bonds.
In the bent bond model, the triple bond can also formed by the overlapping of three sp3 lobes without the need to invoke a pi-bond.
Many elements beyond oxygen can form triple bonds. They are common for transition metals. Hexa(tert-butoxy)ditungsten(III) and Hexa(tert-butoxy)dimolybdenum(III) are well known examples. The M-M distance is about 233 pm.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This training will empowered the student with all the tools of modern chemistry, which will be highly useful for his potential career as a process or medicinal chemist in industry.
Le cours comporte deux parties. Les bases de la thermodynamique des équilibres et de la cinétique des réactions sont introduites dans l'une d'elles. Les premières notions de chimie quantique sur les é
Benzene is an organic chemical compound with the molecular formula C6H6. The benzene molecule is composed of six carbon atoms joined in a planar ring with one hydrogen atom attached to each. Because it contains only carbon and hydrogen atoms, benzene is classed as a hydrocarbon. Benzene is a natural constituent of petroleum and is one of the elementary petrochemicals. Due to the cyclic continuous pi bonds between the carbon atoms, benzene is classed as an aromatic hydrocarbon.
Cyanogen is the chemical compound with the formula (CN)2. The simplest stable carbon nitride, it is a colorless and highly toxic gas with a pungent odor. The molecule is a pseudohalogen. Cyanogen molecules consist of two CN groups – analogous to diatomic halogen molecules, such as Cl2, but far less oxidizing. The two cyano groups are bonded together at their carbon atoms: N≡C‒C≡N, although other isomers have been detected. The name is also used for the CN radical, and hence is used for compounds such as cyanogen bromide (NCBr) (but see also Cyano radical.
In chemistry, pi bonds (π bonds) are covalent chemical bonds, in each of which two lobes of an orbital on one atom overlap with two lobes of an orbital on another atom, and in which this overlap occurs laterally. Each of these atomic orbitals has an electron density of zero at a shared nodal plane that passes through the two bonded nuclei. This plane also is a nodal plane for the molecular orbital of the pi bond. Pi bonds can form in double and triple bonds but do not form in single bonds in most cases.
The alkyne motif is a versatile functional group often encountered in organic chemistry. It can be involved in various transformations such as the alkyne-azide cycloaddition and has found widespread application in medicinal chemistry, chemical biology and ...
We report in this paper a Pd(II)-catalyzed migratory gem-fluorolactonization of ene-carboxylic acids. Reaction of 4-methylenealkanoic acid derivatives with Selectfluor in the presence of Pd(OAc)2 (1.0 mol %) at room temperature affords fluorolactones in go ...
Mechanochemistry harnesses mechanical force to facilitate chemical reactions. Traditionally, the field of polymer mechanochemistry has used methods to activate chemical bonds, which use forces that are larger than those that are required to break a covalen ...