Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Betelgeuse is a red supergiant star of spectral type M1-2 and one of the largest visible to the naked eye. It is usually the tenth-brightest star in the night sky and, after Rigel, the second-brightest in the constellation of Orion. It is a distinctly reddish, semiregular variable star whose apparent magnitude, varying between +0.0 and +1.6, has the widest range displayed by any first-magnitude star. At near-infrared wavelengths, Betelgeuse is the brightest star in the night sky. Its Bayer designation is α Orionis, Latinised to Alpha Orionis and abbreviated Alpha Ori or α Ori. If it were at the center of our Solar System, its surface would lie beyond the asteroid belt and it would engulf the orbits of Mercury, Venus, Earth, and Mars. Calculations of Betelgeuse's mass range from slightly under ten to a little over twenty times that of the Sun. For various reasons, its distance has been quite difficult to measure; current best estimates are on the order of 500–600 light-years from the Sun - a comparatively wide uncertainty for a relatively nearby star. Its absolute magnitude is about −6. Less than 10 million years old, Betelgeuse has evolved rapidly because of its large mass and is expected to end its evolution with a supernova explosion, most likely within 100,000 years. When Betelgeuse explodes, it will shine as bright as the half-Moon— for more than three months. Life on Earth will be unharmed. Having been ejected from its birthplace in the Orion OB1 association - which includes the stars in Orion's Belt - this runaway star has been observed to be moving through the interstellar medium at a speed of 30km/s, creating a bow shock over four light-years wide. In 1920, Betelgeuse became the first extrasolar star whose photosphere's angular size was measured. Subsequent studies have reported an angular diameter (i.e., apparent size) ranging from 0.042 to 0.056 arcseconds; that range of determinations is ascribed to non-sphericity, limb darkening, pulsations and varying appearance at different wavelengths.
Frédéric Courbin, Martin Raoul Robert Millon, Eric Gérard Guy Paic, Cameron Alexander Campbell Lemon, Hung-Hsu Chan, Adriano Agnello