In mathematics, a Boolean ring R is a ring for which x2 = x for all x in R, that is, a ring that consists only of idempotent elements. An example is the ring of integers modulo 2.
Every Boolean ring gives rise to a Boolean algebra, with ring multiplication corresponding to conjunction or meet ∧, and ring addition to exclusive disjunction or symmetric difference (not disjunction ∨, which would constitute a semiring). Conversely, every Boolean algebra gives rise to a Boolean ring. Boolean rings are named after the founder of Boolean algebra, George Boole.
There are at least four different and incompatible systems of notation for Boolean rings and algebras:
In commutative algebra the standard notation is to use x + y = (x ∧ ¬ y) ∨ (¬ x ∧ y) for the ring sum of x and y, and use xy = x ∧ y for their product.
In logic, a common notation is to use x ∧ y for the meet (same as the ring product) and use x ∨ y for the join, given in terms of ring notation (given just above) by x + y + xy.
In set theory and logic it is also common to use x · y for the meet, and x + y for the join x ∨ y. This use of + is different from the use in ring theory.
A rare convention is to use xy for the product and x ⊕ y for the ring sum, in an effort to avoid the ambiguity of +.
Historically, the term "Boolean ring" has been used to mean a "Boolean ring possibly without an identity", and "Boolean algebra" has been used to mean a Boolean ring with an identity. The existence of the identity is necessary to consider the ring as an algebra over the field of two elements: otherwise there cannot be a (unital) ring homomorphism of the field of two elements into the Boolean ring. (This is the same as the old use of the terms "ring" and "algebra" in measure theory.)
One example of a Boolean ring is the power set of any set X, where the addition in the ring is symmetric difference, and the multiplication is intersection. As another example, we can also consider the set of all finite or cofinite subsets of X, again with symmetric difference and intersection as operations.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours couvre les fondements des systèmes numériques. Sur la base d'algèbre Booléenne et de circuits combinatoires et séquentiels incluant les machines d'états finis, les methodes d'analyse et de sy
Ce cours couvre les fondements des systèmes numériques. Sur la base d'algèbre Booléenne et de circuitscombinatoires et séquentiels incluant les machines d'états finis, les methodes d'analyse et de syn
Algebraic K-theory, which to any ring R associates a sequence of groups, can be viewed as a theory of linear algebra over an arbitrary ring. We will study in detail the first two of these groups and a
In mathematics, the distributive property of binary operations is a generalization of the distributive law, which asserts that the equality is always true in elementary algebra. For example, in elementary arithmetic, one has Therefore, one would say that multiplication distributes over addition. This basic property of numbers is part of the definition of most algebraic structures that have two operations called addition and multiplication, such as complex numbers, polynomials, matrices, rings, and fields.
In mathematics, the symmetric difference of two sets, also known as the disjunctive union, is the set of elements which are in either of the sets, but not in their intersection. For example, the symmetric difference of the sets and is . The symmetric difference of the sets A and B is commonly denoted by or The power set of any set becomes an abelian group under the operation of symmetric difference, with the empty set as the neutral element of the group and every element in this group being its own inverse.
Order theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article introduces the field and provides basic definitions. A list of order-theoretic terms can be found in the order theory glossary. Orders are everywhere in mathematics and related fields like computer science. The first order often discussed in primary school is the standard order on the natural numbers e.
Technology mapping transforms a technology-independent representation into a technology-dependent one given a library of cells. This process is performed by means of local replacements that are extracted by matching sections of the subject graph to library ...
We propose a new approach for normalization and simplification of logical formulas. Our approach is based on algorithms for lattice-like structures. Specifically, we present two efficient algorithms for computing a normal form and deciding the word problem ...
2022
,
We present a quasilinear time algorithm to decide the word problem on a natural algebraic structures we call orthocomplemented bisemilattices, a subtheory of boolean algebra. We use as a base a variation of Hopcroft, Ullman and Aho algorithm for tree isomo ...