Geotechnical investigations are performed by geotechnical engineers or engineering geologists to obtain information on the physical properties of soil earthworks and foundations for proposed structures and for repair of distress to earthworks and structures caused by subsurface conditions; this type of investigation is called a site investigation. Geotechnical investigations are also used to measure the thermal resistance of soils or backfill materials required for underground transmission lines, oil and gas pipelines, radioactive waste disposal, and solar thermal storage facilities. A geotechnical investigation will include surface exploration and subsurface exploration of a site. Sometimes, geophysical methods are used to obtain data about sites. Subsurface exploration usually involves soil sampling and laboratory tests of the soil samples retrieved.
Geotechnical investigations are very important before any structure can be built, ranging from a single house to a large warehouse, a multi-storey building, and infrastructure projects like bridges, high-speed rail, and metros.
Surface exploration can include geologic mapping, geophysical methods, and photogrammetry, or it can be as simple as a geotechnical professional walking around on the site to observe the physical conditions at the site. To obtain information about the soil conditions below the surface, some form of subsurface exploration is required. Methods of observing the soils below the surface, obtaining samples, and determining physical properties of the soils and rocks include test pits, trenching (particularly for locating faults and slide planes), borings, and in situ tests. These can also be used to identify contamination in soils prior to development in order to avoid negative environmental impacts.
Borings come in two main varieties: large diameter and small diameter. Large-diameter borings are rarely used because of safety concerns and expense but are sometimes used to allow a geologist or an engineer to visually and manually examine the soil and rock stratigraphy in-situ.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course advances geomechanics knowledge, focusing on lab tests, in situ & geophysical investigations for interpreting geotechnical projects. Practical modules cover rock physics, mechanics, boreho
The course aims at providing future civil engineers with a comprehensive view on soil slope stability. It addresses landslide types and mass movement classification; slope failure mechanisms and metho
Les étudiants connaissent les techniques de calculs et de réalisation des fondation d'ouvrages et de soutènement des en terrain meuble.
Ils savent
déterminer les facteurs influençant un projet géot
Soil mechanics is a branch of soil physics and applied mechanics that describes the behavior of soils. It differs from fluid mechanics and solid mechanics in the sense that soils consist of a heterogeneous mixture of fluids (usually air and water) and particles (usually clay, silt, sand, and gravel) but soil may also contain organic solids and other matter. Along with rock mechanics, soil mechanics provides the theoretical basis for analysis in geotechnical engineering, a subdiscipline of civil engineering, and engineering geology, a subdiscipline of geology.
The standard penetration test (SPT) is an in-situ dynamic penetration test designed to provide information on the geotechnical engineering properties of soil. This test is the most frequently used subsurface exploration drilling test performed worldwide. The test procedure is described in ISO 22476-3, ASTM D1586 and Australian Standards AS 1289.6.3.1. The test provides samples for identification purposes and provides a measure of penetration resistance which can be used for geotechnical design purposes.
A triaxial shear test is a common method to measure the mechanical properties of many deformable solids, especially soil (e.g., sand, clay) and rock, and other granular materials or powders. There are several variations on the test. In a triaxial shear test, stress is applied to a sample of the material being tested in a way which results in stresses along one axis being different from the stresses in perpendicular directions.
Estimating the stress of reinforcing bars and its variations in service conditions can be useful to determine the reserve capacity of structures or to assess the risk of fatigue in the reinforcement. This paper investigates the use crack width measurements ...
Several boreholes were drilled for site comparison of a deep geological repository (DGR) in Northern Switzerland. The main target of the exploration program was the >100m thick Opalinus Clay, the designated host rock encountered at approximately 450 to 100 ...
Redox reactions underlie several biogeochemical processes and are typically spatiotemporally heterogeneous in soils and sediments. However, redox heterogeneity has yet to be incorporated into mainstream conceptualizations and modeling of soil biogeochemist ...