A high-pass filter (HPF) is an electronic filter that passes signals with a frequency higher than a certain cutoff frequency and attenuates signals with frequencies lower than the cutoff frequency. The amount of attenuation for each frequency depends on the filter design. A high-pass filter is usually modeled as a linear time-invariant system. It is sometimes called a low-cut filter or bass-cut filter in the context of audio engineering. High-pass filters have many uses, such as blocking DC from circuitry sensitive to non-zero average voltages or radio frequency devices. They can also be used in conjunction with a low-pass filter to produce a band-pass filter.
In the optical domain filters are often characterised by wavelength rather than frequency. High-pass and low-pass have the opposite meanings, with a "high-pass" filter (more commonly "long-pass") passing only longer wavelengths (lower frequencies), and vice versa for "low-pass" (more commonly "short-pass").
In electronics, a filter is a two-port electronic circuit which removes frequency components from a signal (time-varying voltage or current) applied to its input port. A high-pass filter attenuates frequency components below a certain frequency, called its cutoff frequency, allowing higher frequency components to pass through. This contrasts with a low-pass filter, which attenuates frequencies higher than a certain frequency, and a bandpass filter, which allows a certain band of frequencies through and attenuates frequencies both higher and lower than the band.
In optics a high pass filter is a transparent or translucent window of colored material that allows light longer than a certain wavelength to pass through and attenuates light of shorter wavelengths. Since light is often measured not by frequency but by wavelength, which is inversely related to frequency, a high pass optical filter, which attenuates light frequencies below a cutoff frequency, is often called a short-pass filter; it attenuates longer wavelengths.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (32)
This course addresses the implementation of organic and printed electronics technologies using large area manufacturing techniques. It will provide knowledge on materials, printing techniques, devices
Les concepts de base permettant de comprendre et d'analyser les systèmes électroniques dédiés à l'acquisition et au traitement des signaux (signaux physiologique, bio-capteurs) seront abordés en théor
Le but de ce cours est d'apporter les connaissances et les expériences fondamentales pour comprendre les systèmes électriques et électroniques de base.
In signal processing, a filter is a device or process that removes some unwanted components or features from a signal. Filtering is a class of signal processing, the defining feature of filters being the complete or partial suppression of some aspect of the signal. Most often, this means removing some frequencies or frequency bands. However, filters do not exclusively act in the frequency domain; especially in the field of many other targets for filtering exist.
A band-pass filter or bandpass filter (BPF) is a device that passes frequencies within a certain range and rejects (attenuates) frequencies outside that range. In electronics and signal processing, a filter is usually a two-port circuit or device which removes frequency components of a signal (an alternating voltage or current). A band-pass filter allows through components in a specified band of frequencies, called its passband but blocks components with frequencies above or below this band.
Audio crossovers are a type of electronic filter circuitry that splits an audio signal into two or more frequency ranges, so that the signals can be sent to loudspeaker drivers that are designed to operate within different frequency ranges. The crossover filters can be either active or passive. They are often described as two-way or three-way, which indicate, respectively, that the crossover splits a given signal into two frequency ranges or three frequency ranges.
The course provides a comprehensive overview of digital signal processing theory, covering discrete time, Fourier analysis, filter design, sampling, interpolation and quantization; it also includes a
Basic signal processing concepts, Fourier analysis and filters. This module can
be used as a starting point or a basic refresher in elementary DSP
Adaptive signal processing, A/D and D/A. This module provides the basic
tools for adaptive filtering and a solid mathematical framework for sampling and
quantization
Solid-State Transformers with Input-Series/Output-Parallel configuration offer a convenient solution for AC/DC conversion due to their scalability and modularity. In this configuration, each module experiences a second-order harmonic ripple caused by local ...
As the fundamental machinery orchestrating cellular functions, proteins influence the state of every cell profoundly. As cells exhibit significant variations from one to another, analyzing the proteome on a single-cell level is imperative to unravel their ...
This paper describes a balanced frequency shift keying (FSK) modulation, namely quasi-balanced FSK (QB-FSK), for energy-efficient high-data-rate communication. Not suffering from data-pattern dependency, the proposed modulation method enables frequency mod ...