Energy crops are low-cost and low-maintenance crops grown solely for renewable bioenergy production (not for food). The crops are processed into solid, liquid or gaseous fuels, such as pellets, bioethanol or biogas. The fuels are burned to generate electrical power or heat.
The plants are generally categorized as woody or herbaceous. Woody plants include willow and poplar, herbaceous plants include Miscanthus x giganteus and Pennisetum purpureum (both known as elephant grass). Herbaceous crops, while physically smaller than trees, store roughly twice the amount of CO2 (in the form of carbon) below ground compared to woody crops.
Through biotechnological procedures such as genetic modification, plants can be manipulated to create higher yields. Relatively high yields can also be realized with existing cultivars. However, some additional advantages such as reduced associated costs (i.e. costs during the manufacturing process) and less water use can only be accomplished by using genetically modified crops.
TOC
Solid biomass, often pelletized, is used for combustion in thermal power stations, either alone or co-fired with other fuels. Alternatively it may be used for heat or combined heat and power (CHP) production.
In short rotation coppice (SRC) agriculture, fast growing tree species like willow and poplar are grown and harvested in short cycles of three to five years. These trees grow best in wet soil conditions. An influence on local water conditions can not be excluded. Establishment close to vulnerable wetland should be avoided.
Whole crops such as maize, Sudan grass, millet, white sweet clover, and many others can be made into silage and then converted into biogas.
Anaerobic digesters or biogas plants can be directly supplemented with energy crops once they have been ensiled into silage. The fastest-growing sector of German biofarming has been in the area of "Renewable Energy Crops" on nearly of land (2006). Energy crops can also be grown to boost gas yields where feedstocks have a low energy content, such as manures and spoiled grain.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Cellulosic ethanol is ethanol (ethyl alcohol) produced from cellulose (the stringy fiber of a plant) rather than from the plant's seeds or fruit. It can be produced from grasses, wood, algae, or other plants. It is generally discussed for use as a biofuel. The carbon dioxide that plants absorb as they grow offsets some of the carbon dioxide emitted when ethanol made from them is burned, so cellulosic ethanol fuel has the potential to have a lower carbon footprint than fossil fuels.
Arundo donax is a tall perennial cane. It is one of several so-called reed species. It has several common names including giant cane, elephant grass, carrizo, arundo, Spanish cane, Colorado river reed, wild cane, and giant reed. Arundo and donax are respectively the old Latin and Greek names for reed. Arundo donax grows in damp soils, either fresh or moderately saline, and is native to the Greater Middle East.
Biomass is a term used in several contexts: in the context of ecology it means living organisms, and in the context of bioenergy it means matter from recently living (but now dead) organisms. In the latter context, there are variations in how biomass is defined, e.g. only from plants, or from plants and algae, or from plants and animals. The vast majority of biomass used for bioenergy does come from plants. Bioenergy is a type of renewable energy with potential to assist with climate change mitigation.
The learning outcomes are to get to know the biomass ressources and its characteristics; study of biomass conversion pathways and study of process flow-sheets; establish the flow diagram of an industr
This course presents an overview of (i) the current energy system and uses (ii) the main principles of conventional and renewable energy technologies and (iii) the most important parameters that defin
This course examines the supply of energy from various angles: available resources, how they can be combined or substituted, their private and social costs, whether they can meet the demand, and how t
Explores cell growth, stoichiometry, medium evaluation, elemental balances, and energy yields in biochemical engineering.
Discusses the potential of biomass as a renewable energy source and its various uses.
Covers biomass conversion, hydrogen storage, catalyst properties, porous materials, metal hydrides, and DOE targets for hydrogen storage.
Autonomous robots have the potential to fundamentally transform conventional farming methods, e.g. by enabling economically viable farming of sloped arable land. However, navigation on slopes in harsh conditions is challenging for robots as they must be pr ...
The dependency on fossil fuels and their impact on the environment is a matter of great concern for the future sustainability of modern society. The development of the "green" technologies which utilize renewable energy sources is now under investigation. ...
Biomass is a highly versatile renewable resource for decarbonizing energy systems. Gasification is a promising conversion technology that can transform biomass into multiple energy carriers to produce heat, electricity, biofuels, or chemicals. At present, ...