Concept

Paley graph

Summary
In mathematics, Paley graphs are dense undirected graphs constructed from the members of a suitable finite field by connecting pairs of elements that differ by a quadratic residue. The Paley graphs form an infinite family of conference graphs, which yield an infinite family of symmetric conference matrices. Paley graphs allow graph-theoretic tools to be applied to the number theory of quadratic residues, and have interesting properties that make them useful in graph theory more generally. Paley graphs are named after Raymond Paley. They are closely related to the Paley construction for constructing Hadamard matrices from quadratic residues . They were introduced as graphs independently by and . Sachs was interested in them for their self-complementarity properties, while Erdős and Rényi studied their symmetries. Paley digraphs are directed analogs of Paley graphs that yield antisymmetric conference matrices. They were introduced by (independently of Sachs, Erdős, and Rényi) as a way of constructing tournaments with a property previously known to be held only by random tournaments: in a Paley digraph, every small subset of vertices is dominated by some other vertex. Let q be a prime power such that q = 1 (mod 4). That is, q should either be an arbitrary power of a Pythagorean prime (a prime congruent to 1 mod 4) or an even power of an odd non-Pythagorean prime. This choice of q implies that in the unique finite field Fq of order q, the element −1 has a square root. Now let V = Fq and let If a pair {a,b} is included in E, it is included under either ordering of its two elements. For, a − b = −(b − a), and −1 is a square, from which it follows that a − b is a square if and only if b − a is a square. By definition G = (V, E) is the Paley graph of order q. For q = 13, the field Fq is just integer arithmetic modulo 13. The numbers with square roots mod 13 are: ±1 (square roots ±1 for +1, ±5 for −1) ±3 (square roots ±4 for +3, ±6 for −3) ±4 (square roots ±2 for +4, ±3 for −4).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.