In mathematics, Paley graphs are dense undirected graphs constructed from the members of a suitable finite field by connecting pairs of elements that differ by a quadratic residue. The Paley graphs form an infinite family of conference graphs, which yield an infinite family of symmetric conference matrices. Paley graphs allow graph-theoretic tools to be applied to the number theory of quadratic residues, and have interesting properties that make them useful in graph theory more generally.
Paley graphs are named after Raymond Paley. They are closely related to the Paley construction for constructing Hadamard matrices from quadratic residues .
They were introduced as graphs independently by and . Sachs was interested in them for their self-complementarity properties, while Erdős and Rényi studied their symmetries.
Paley digraphs are directed analogs of Paley graphs that yield antisymmetric conference matrices. They were introduced by (independently of Sachs, Erdős, and Rényi) as a way of constructing tournaments with a property previously known to be held only by random tournaments: in a Paley digraph, every small subset of vertices is dominated by some other vertex.
Let q be a prime power such that q = 1 (mod 4). That is, q should either be an arbitrary power of a Pythagorean prime (a prime congruent to 1 mod 4) or an even power of an odd non-Pythagorean prime. This choice of q implies that in the unique finite field Fq of order q, the element −1 has a square root.
Now let V = Fq and let
If a pair {a,b} is included in E, it is included under either ordering of its two elements. For, a − b = −(b − a), and −1 is a square, from which it follows that a − b is a square if and only if b − a is a square.
By definition G = (V, E) is the Paley graph of order q.
For q = 13, the field Fq is just integer arithmetic modulo 13. The numbers with square roots mod 13 are:
±1 (square roots ±1 for +1, ±5 for −1)
±3 (square roots ±4 for +3, ±6 for −3)
±4 (square roots ±2 for +4, ±3 for −4).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, a Hadamard matrix, named after the French mathematician Jacques Hadamard, is a square matrix whose entries are either +1 or −1 and whose rows are mutually orthogonal. In geometric terms, this means that each pair of rows in a Hadamard matrix represents two perpendicular vectors, while in combinatorial terms, it means that each pair of rows has matching entries in exactly half of their columns and mismatched entries in the remaining columns.
In graph theory, a rook's graph is an undirected graph that represents all legal moves of the rook chess piece on a chessboard. Each vertex of a rook's graph represents a square on a chessboard, and there is an edge between any two squares sharing a row (rank) or column (file), the squares that a rook can move between. These graphs can be constructed for chessboards of any rectangular shape.
In mathematics, the Paley construction is a method for constructing Hadamard matrices using finite fields. The construction was described in 1933 by the English mathematician Raymond Paley. The Paley construction uses quadratic residues in a finite field GF(q) where q is a power of an odd prime number. There are two versions of the construction depending on whether q is congruent to 1 or 3 (mod 4). Let q be a power of an odd prime.
We study obstructions for a quasi-regular mapping f : M -> N of finite degree between Riemannian manifolds to blow up on or collapse on a non-trivial part of the boundary of M. ...
We confirm, for the primes up to 3000, the conjecture of Bourgain-Gamburd-Sarnak and Baragar on strong approximation for the Markoff surface modulo primes. For primes congruent to 3 modulo 4, we find data suggesting that some natural graphs constructed fro ...
TAYLOR & FRANCIS INC2020
In this thesis, we deal with binet matrices, an extension of network matrices. The main result of this thesis is the following. A rational matrix A of size n×m can be tested for being binet in time O(n6m). If A is binet, our algorithm outputs a nonsingular ...