In mathematics, the phrase complete partial order is variously used to refer to at least three similar, but distinct, classes of partially ordered sets, characterized by particular completeness properties. Complete partial orders play a central role in theoretical computer science: in denotational semantics and domain theory. A complete partial order, abbreviated cpo, can refer to any of the following concepts depending on context. A partially ordered set is a directed-complete partial order (dcpo) if each of its directed subsets has a supremum. A subset of a partial order is directed if it is non-empty and every pair of elements has an upper bound in the subset. In the literature, dcpos sometimes also appear under the label up-complete poset. A partially ordered set is a pointed directed-complete partial order if it is a dcpo with a least element. They are sometimes abbreviated cppos. A partially ordered set is a ω-complete partial order (ω-cpo) if it is a poset in which every ω-chain (x1 ≤ x2 ≤ x3 ≤ x4 ≤ ...) has a supremum that belongs to the poset. Every dcpo is an ω-cpo, since every ω-chain is a directed set, but the converse is not true. However, every ω-cpo with a basis is also a dcpo (with the same basis). An ω-cpo (dcpo) with a basis is also called a continuous ω-cpo (continuous dcpo). Note that complete partial order is never used to mean a poset in which all subsets have suprema; the terminology complete lattice is used for this concept. Requiring the existence of directed suprema can be motivated by viewing directed sets as generalized approximation sequences and suprema as limits of the respective (approximative) computations. This intuition, in the context of denotational semantics, was the motivation behind the development of domain theory. The dual notion of a directed-complete partial order is called a filtered-complete partial order. However, this concept occurs far less frequently in practice, since one usually can work on the dual order explicitly. Every finite poset is directed complete.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.