Summary
In the mathematical area of order theory, completeness properties assert the existence of certain infima or suprema of a given partially ordered set (poset). The most familiar example is the completeness of the real numbers. A special use of the term refers to complete partial orders or complete lattices. However, many other interesting notions of completeness exist. The motivation for considering completeness properties derives from the great importance of suprema (least upper bounds, joins, "") and infima (greatest lower bounds, meets, "") to the theory of partial orders. Finding a supremum means to single out one distinguished least element from the set of upper bounds. On the one hand, these special elements often embody certain concrete properties that are interesting for the given application (such as being the least common multiple of a set of numbers or the union of a collection of sets). On the other hand, the knowledge that certain types of subsets are guaranteed to have suprema or infima enables us to consider the evaluation of these elements as total operations on a partially ordered set. For this reason, posets with certain completeness properties can often be described as algebraic structures of a certain kind. In addition, studying the properties of the newly obtained operations yields further interesting subjects. All completeness properties are described along a similar scheme: one describes a certain class of subsets of a partially ordered set that are required to have a supremum or required to have an infimum. Hence every completeness property has its dual, obtained by inverting the order-dependent definitions in the given statement. Some of the notions are usually not dualized while others may be self-dual (i.e. equivalent to their dual statements). The easiest example of a supremum is the empty one, i.e. the supremum of the empty set. By definition, this is the least element among all elements that are greater than each member of the empty set.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.