Low-molecular-weight heparin (LMWH) is a class of anticoagulant medications. They are used in the prevention of blood clots and treatment of venous thromboembolism (deep vein thrombosis and pulmonary embolism) and in the treatment of myocardial infarction.
Heparin is a naturally occurring polysaccharide that inhibits coagulation, the process that leads to thrombosis. Natural heparin consists of molecular chains of varying lengths, or molecular weights. Chains of varying molecular weights, from 5000 to over 40,000 Daltons, make up polydisperse pharmaceutical-grade heparin. LMWHs, in contrast, consist of only short chains of polysaccharide. LMWHs are defined as heparin salts having an average molecular weight of less than 8000 Da and for which at least 60% of all chains have a molecular weight less than 8000 Da. These are obtained by various methods of fractionation or depolymerisation of polymeric heparin.
Heparin derived from natural sources, mainly porcine intestine or bovine lung, can be administered therapeutically to prevent thrombosis. However, the effects of natural, or unfractionated heparin are more unpredictable than LMWH.
Because it can be given subcutaneously and does not require APTT monitoring, LMWH permits outpatient treatment of conditions such as deep vein thrombosis or pulmonary embolism that previously mandated inpatient hospitalization for unfractionated heparin administration.
Because LMWH has more predictable pharmacokinetics and anticoagulant effect, LMWH is recommended over unfractionated heparin for patients with massive pulmonary embolism, and for initial treatment of deep vein thrombosis. As compared to placebo or no intervention, prophylactic treatment of hospitalized medical patients using LMWH and similar anticoagulants reduces the risk of venous thromboembolism, notably pulmonary embolism.
More recently these agents have been evaluated as anticoagulants in acute coronary syndrome (ACS) managed by percutaneous intervention (PCI).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Rivaroxaban, sold under the brand name Xarelto among others, is an anticoagulant medication (blood thinner) used to treat and prevent blood clots. Specifically it is used to treat deep vein thrombosis and pulmonary emboli and prevent blood clots in atrial fibrillation and following hip or knee surgery. It is taken by mouth. Common side effects include bleeding. Other serious side effects may include spinal hematoma and anaphylaxis. It is unclear if use in pregnancy and breastfeeding is safe.
Thrombophilia (sometimes called hypercoagulability or a prothrombotic state) is an abnormality of blood coagulation that increases the risk of thrombosis (blood clots in blood vessels). Such abnormalities can be identified in 50% of people who have an episode of thrombosis (such as deep vein thrombosis in the leg) that was not provoked by other causes. A significant proportion of the population has a detectable thrombophilic abnormality, but most of these develop thrombosis only in the presence of an additional risk factor.
Deep vein thrombosis (DVT) is a type of venous thrombosis involving the formation of a blood clot in a deep vein, most commonly in the legs or pelvis. A minority of DVTs occur in the arms. Symptoms can include pain, swelling, redness, and enlarged veins in the affected area, but some DVTs have no symptoms. The most common life-threatening concern with DVT is the potential for a clot to embolize (detach from the veins), travel as an embolus through the right side of the heart, and become lodged in a pulmonary artery that supplies blood to the lungs.
Cyclic peptides are ring-shaped molecules that emerged as a promising class of therapeutics. While it is often difficult to find small molecule binders for challenging disease targets, cyclic peptides can bind to featureless surfaces or inhibit protein-pro ...
In acute ischemic stroke, the composition of the occlusive clot can be associated with the underlying pathophysiology and the response to treatment. For these reasons, it is important to characterize the clot composition from clinical scans. We examine the ...
Moulineaux Cedex 92024
, ,
Cellular therapies remain constrained by the limited availability of sensors for disease markers. Here we present an integrated target-to-receptor pipeline for constructing a customizable advanced modular bispecific extracellular receptor (AMBER) that comb ...