Linear logic is a substructural logic proposed by Jean-Yves Girard as a refinement of classical and intuitionistic logic, joining the dualities of the former with many of the constructive properties of the latter. Although the logic has also been studied for its own sake, more broadly, ideas from linear logic have been influential in fields such as programming languages, game semantics, and quantum physics (because linear logic can be seen as the logic of quantum information theory), as well as linguistics, particularly because of its emphasis on resource-boundedness, duality, and interaction. Linear logic lends itself to many different presentations, explanations, and intuitions. Proof-theoretically, it derives from an analysis of classical sequent calculus in which uses of (the structural rules) contraction and weakening are carefully controlled. Operationally, this means that logical deduction is no longer merely about an ever-expanding collection of persistent "truths", but also a way of manipulating resources that cannot always be duplicated or thrown away at will. In terms of simple denotational models, linear logic may be seen as refining the interpretation of intuitionistic logic by replacing cartesian (closed) categories by symmetric monoidal (closed) categories, or the interpretation of classical logic by replacing Boolean algebras by C*-algebras. The language of classical linear logic (CLL) is defined inductively by the BNF notation Here p and p⊥ range over logical atoms. For reasons to be explained below, the connectives ⊗, ⅋, 1, and ⊥ are called multiplicatives, the connectives &, ⊕, ⊤, and 0 are called additives, and the connectives ! and ? are called exponentials. We can further employ the following terminology: Binary connectives ⊗, ⊕, & and ⅋ are associative and commutative; 1 is the unit for ⊗, 0 is the unit for ⊕, ⊥ is the unit for ⅋ and ⊤ is the unit for &. Every proposition A in CLL has a dual A⊥, defined as follows: Observe that (-)⊥ is an involution, i.e., A⊥⊥ = A for all propositions.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (5)
MATH-381: Mathematical logic
Branche des mathématiques en lien avec le fondement des mathématiques et l'informatique théorique. Le cours est centré sur la logique du 1er ordre et l'articulation entre syntaxe et sémantique.
CS-628: Interactive Theorem Proving CS
A hands-on introduction to interactive theorem proving, proofs as programs, dependent types, and to the Coq proof assistant. Come learn how to write bug-free code!
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Show more
Related lectures (26)
Propositional Logic: Implication and Compound Propositions
Covers logical connectives, implication, biconditional, compound propositions, and truth tables.
Predicate Logic: Quantifiers and Truth Values
Explores existential quantifiers, truth values, and composite statements in predicate logic.
Propositional Logic: Implication and Compound Propositions
Covers logical connectives, implication, biconditional, and compound propositions in propositional logic.
Show more
Related publications (32)

Interpolation and Quantifiers in Ortholattices

Viktor Kuncak, Simon Guilloud, Sankalp Gambhir

We study quantifiers and interpolation properties in orthologic, a non-distributive weakening of classical logic that is sound for formula validity with respect to classical logic, yet has a quadratic-time decision procedure. We present a sequent-based pro ...
Cham2024

Interpolation and Quantifiers in Ortholattices

Viktor Kuncak, Simon Guilloud, Sankalp Gambhir

We study quantifiers and interpolation properties in ortho- logic, a non-distributive weakening of classical logic that is sound for formula validity with respect to classical logic, yet has a quadratic-time decision procedure. We present a sequent-based p ...
2024

We Need Subject Matter Expertise to Choose and Identify Causal Estimands: Comment on "Estimands for Recurrent Event Endpoints in the Presence of a Terminal Event"

Mats Julius Stensrud, Matias Janvin

We summarize what we consider to be the two main limitations of the "Estimands for Recurrent Event Endpoints in the Presence of a Terminal Event" (Schmidli et al. 2022). First, the authors did not give detailed guidance on how to choose an appropriate esti ...
TAYLOR & FRANCIS INC2023
Show more
Related concepts (17)
Substructural type system
Substructural type systems are a family of type systems analogous to substructural logics where one or more of the structural rules are absent or only allowed under controlled circumstances. Such systems are useful for constraining access to system resources such as , locks, and memory by keeping track of changes of state that occur and preventing invalid states. Several type systems have emerged by discarding some of the structural rules of exchange, weakening, and contraction: Ordered type systems (discard exchange, weakening and contraction): Every variable is used exactly once in the order it was introduced.
Substructural logic
In logic, a substructural logic is a logic lacking one of the usual structural rules (e.g. of classical and intuitionistic logic), such as weakening, contraction, exchange or associativity. Two of the more significant substructural logics are relevance logic and linear logic. In a sequent calculus, one writes each line of a proof as Here the structural rules are rules for rewriting the LHS of the sequent, denoted Γ, initially conceived of as a string (sequence) of propositions.
Jean-Yves Girard
Jean-Yves Girard (ʒiʁaʁ; born 1947) is a French logician working in proof theory. He is a research director (emeritus) at the mathematical institute of University of Aix-Marseille, at Luminy. Jean-Yves Girard is an alumnus of the École normale supérieure de Saint-Cloud. He made a name for himself in the 1970s with his proof of strong normalization in a system of second-order logic called System F. This result gave a new proof of Takeuti's conjecture, which was proven a few years earlier by William W.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.