In logic, a substructural logic is a logic lacking one of the usual structural rules (e.g. of classical and intuitionistic logic), such as weakening, contraction, exchange or associativity. Two of the more significant substructural logics are relevance logic and linear logic.
In a sequent calculus, one writes each line of a proof as
Here the structural rules are rules for rewriting the LHS of the sequent, denoted Γ, initially conceived of as a string (sequence) of propositions. The standard interpretation of this string is as conjunction: we expect to read
as the sequent notation for
(A and B) implies C.
Here we are taking the RHS Σ to be a single proposition C (which is the intuitionistic style of sequent); but everything applies equally to the general case, since all the manipulations are taking place to the left of the turnstile symbol .
Since conjunction is a commutative and associative operation, the formal setting-up of sequent theory normally includes structural rules for rewriting the sequent Γ accordingly—for example for deducing
from
There are further structural rules corresponding to the idempotent and monotonic properties of conjunction: from
we can deduce
Also from
one can deduce, for any B,
Linear logic, in which duplicated hypotheses 'count' differently from single occurrences, leaves out both of these rules, while relevant (or relevance) logics merely leaves out the latter rule, on the ground that B is clearly irrelevant to the conclusion.
The above are basic examples of structural rules. It is not that these rules are contentious, when applied in conventional propositional calculus. They occur naturally in proof theory, and were first noticed there (before receiving a name).
There are numerous ways to compose premises (and in the multiple-conclusion case, conclusions as well). One way is to collect them into a set. But since e.g. {a,a} = {a} we have contraction for free if premises are sets. We also have associativity and permutation (or commutativity) for free as well, among other properties.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Relevance logic, also called relevant logic, is a kind of non-classical logic requiring the antecedent and consequent of implications to be relevantly related. They may be viewed as a family of substructural or modal logics. It is generally, but not universally, called relevant logic by British and, especially, Australian logicians, and relevance logic by American logicians. Relevance logic aims to capture aspects of implication that are ignored by the "material implication" operator in classical truth-functional logic, namely the notion of relevance between antecedent and conditional of a true implication.
Linear logic is a substructural logic proposed by Jean-Yves Girard as a refinement of classical and intuitionistic logic, joining the dualities of the former with many of the constructive properties of the latter. Although the logic has also been studied for its own sake, more broadly, ideas from linear logic have been influential in fields such as programming languages, game semantics, and quantum physics (because linear logic can be seen as the logic of quantum information theory), as well as linguistics, particularly because of its emphasis on resource-boundedness, duality, and interaction.
Affine logic is a substructural logic whose proof theory rejects the structural rule of contraction. It can also be characterized as linear logic with weakening. The name "affine logic" is associated with linear logic, to which it differs by allowing the weakening rule. Jean-Yves Girard introduced the name as part of the geometry of interaction semantics of linear logic, which characterizes linear logic in terms of linear algebra; here he alludes to affine transformations on vector spaces. Affine logic predated linear logic.
First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists" is a quantifier, while x is a variable.
Classical logic (or standard logic or Frege-Russell logic) is the intensively studied and most widely used class of deductive logic. Classical logic has had much influence on analytic philosophy. Each logical system in this class shares characteristic properties: Law of excluded middle and double negation elimination Law of noncontradiction, and the principle of explosion Monotonicity of entailment and idempotency of entailment Commutativity of conjunction De Morgan duality: every logical operator is dual to another While not entailed by the preceding conditions, contemporary discussions of classical logic normally only include propositional and first-order logics.
Non-classical logics (and sometimes alternative logics) are formal systems that differ in a significant way from standard logical systems such as propositional and predicate logic. There are several ways in which this is done, including by way of extensions, deviations, and variations. The aim of these departures is to make it possible to construct different models of logical consequence and logical truth. Philosophical logic is understood to encompass and focus on non-classical logics, although the term has other meanings as well.
We study a framework for the specification of architecture styles as families of architectures involving a common set of types of components and coordination mechanisms. The framework combines two logics: 1) interaction logics for the specification of arch ...
Elsevier Science Inc2017
, ,
We study quantifiers and interpolation properties in orthologic, a non-distributive weakening of classical logic that is sound for formula validity with respect to classical logic, yet has a quadratic-time decision procedure. We present a sequent-based pro ...
Cham2024
, ,
We study quantifiers and interpolation properties in ortho- logic, a non-distributive weakening of classical logic that is sound for formula validity with respect to classical logic, yet has a quadratic-time decision procedure. We present a sequent-based p ...