Summary
Chinese input methods for computers are methods that allow a computer user to input Chinese characters. Most, if not all, Chinese input methods fall into one of two categories: phonetic readings or root shapes. Methods under the phonetic category usually are easier to learn but are less efficient, thus resulting in slower typing speeds because they typically require users to choose from a list of phonetically similar characters for input, whereas methods under the root shape category allow very precise and speedy input but have a steep learning curve because they often require a thorough understanding of a character's strokes and composition. Other methods allow users to write characters directly onto touchscreens, such as those found on mobile phones and tablet computers. Chinese input methods predate the computer. One of the early attempts was an electro-mechanical Chinese typewriter Ming kwai () which was invented by Lin Yutang, a prominent Chinese writer, in the 1940s. It assigned thirty base shapes or strokes to different keys and adopted a new way of categorizing Chinese characters. But the typewriter was not produced commercially and Lin soon found himself deeply in debt. Before the 1980s, Chinese publishers hired teams of workers and selected a few thousand type pieces from an enormous Chinese character set. Chinese government agencies entered characters using a long, complicated list of Chinese telegraph codes, which assigned different numbers to each character. During the early computer era, Chinese characters were categorized by their radicals or Pinyin romanization, but results were less than satisfactory. In the 1970s to 1980s, large keyboards with thousands of keys were used to input Chinese. Each key was mapped to several Chinese characters. To type a character, one pressed the character key and then a selection key. There were also experimental "radical keyboards" with dozens to several hundreds keys. Chinese characters were decomposed into "radicals", each of which was represented by a key.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (8)
EE-110: Logic systems (for MT)
Ce cours couvre les fondements des systèmes numériques. Sur la base d'algèbre Booléenne et de circuitscombinatoires et séquentiels incluant les machines d'états finis, les methodes d'analyse et de syn
EE-611: Linear system theory
The course covers control theory and design for linear time-invariant systems : (i) Mathematical descriptions of systems (ii) Multivariables realizations; (iii) Stability ; (iv) Controllability and Ob
DH-406: Machine learning for DH
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
Show more