Concept

Chemical engineering

Chemical engineering is an engineering field which deals with the study of operation and design of chemical plants as well as methods of improving production. Chemical engineers develop economical commercial processes to convert raw materials into useful products. Chemical engineering uses principles of chemistry, physics, mathematics, biology, and economics to efficiently use, produce, design, transport and transform energy and materials. The work of chemical engineers can range from the utilization of nanotechnology and nanomaterials in the laboratory to large-scale industrial processes that convert chemicals, raw materials, living cells, microorganisms, and energy into useful forms and products. Chemical engineers are involved in many aspects of plant design and operation, including safety and hazard assessments, process design and analysis, modeling, control engineering, chemical reaction engineering, nuclear engineering, biological engineering, construction specification, and operating instructions. Chemical engineers typically hold a degree in Chemical Engineering or Process Engineering. Practicing engineers may have professional certification and be accredited members of a professional body. Such bodies include the Institution of Chemical Engineers (IChemE) or the American Institute of Chemical Engineers (AIChE). In India the equivalent body is the Indian Institute of Chemical Engineers (IIChE) which also conducts collaborative events with AIChE and ICheE. A degree in chemical engineering is directly linked with all of the other engineering disciplines, to various extents. A 1996 article cites James F. Donnelly for mentioning an 1839 reference to chemical engineering in relation to the production of sulfuric acid. In the same paper, however, George E. Davis, an English consultant, was credited with having coined the term. Davis also tried to found a Society of Chemical Engineering, but instead, it was named the Society of Chemical Industry (1881), with Davis as its first secretary.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (24)
BIOENG-430: Selected topics in life sciences
The course presents an overview on how recent advances at the interfaces of biology, biotechnology, engineering, physical sciences, and medicine are 1) shaping the landscape of biomedical research; 2)
CH-250: Mathematical methods in chemistry
This course consists of two parts. The first part covers basic concepts of molecular symmetry and the application of group theory to describe it. The second part introduces Laplace transforms and Four
ChE-203: Introduction to chemical engineering Laboratory Works
Ce cours vise à exposer les étudiants aux processus importants pour le génie chimique. Expériences sont réalisées dans des groupes. Les résultats sont analysés et utilisés pour concevoir des procédés
Show more
Related lectures (141)
Interferometer Basics
Covers the basics of interferometers and their applications in physics and engineering.
Electrical-Magnetic AnalogyMOOC: Conversion electromécanique I
Discusses the analogy between electrical and magnetic systems and their duality in engineering.
Liquid-Liquid Extraction
Explores liquid-liquid extraction principles and calculations for efficient solute transfer between liquid phases.
Show more
Related publications (228)

Decarbonizing the fertilizers sector: an alternative pathway for urea and nitric acid production

François Maréchal, Daniel Alexander Florez Orrego, Meire Ellen Gorete Ribeiro Domingos

In order to alleviate the environmental impact that nitrogen fertilizers production is responsible for, several efforts have been addressed to incentivize the partial or total decarbonization of the supply chains of ammonia and its derivatives. The decarbo ...
2024

New Polymers from Biomass-Derived Hydroxycinnamic Acid Derivatives

Ghezae Tekleab

Polymers play a central role in shaping our world across various fields, but their heavy reliance on petrochemicals poses climate change, environmental and health risks. To address and alleviate these issues, transitioning to sustainable polymers, sourced ...
EPFL2024

Splitting probabilities and mean first passage times across multiple thresholds of jump-and-drift transition paths

Paolo Perona, Giulio Calvani

We apply the stochastic-trajectory analysis to derive exact expressions for the mean first passage times of jump-and-drift transition paths across two or more consecutive thresholds. We perform the analysis of the crossing statistics in terms of dimensionl ...
2023
Show more
Related concepts (40)
Engineering
Engineering is the practice of using natural science, mathematics, and the engineering design process to solve problems, increase efficiency and productivity, and improve systems. Modern engineering comprises many subfields which include designing and creating infrastructure, machinery, vehicles, electronics, materials, and energy. The discipline of engineering encompasses a broad range of more specialized fields of engineering, each with a more specific emphasis on particular areas of applied mathematics, applied science, and types of application.
Distillation
Distillation, or classical distillation, is the process of separating the components or substances from a liquid mixture by using selective boiling and condensation, usually inside an apparatus known as a still. Dry distillation is the heating of solid materials to produce gaseous products (which may condense into liquids or solids); this may involve chemical changes such as destructive distillation or cracking.
Biomedical engineering
Biomedical engineering (BME) or medical engineering is the application of engineering principles and design concepts to medicine and biology for healthcare purposes (e.g., diagnostic or therapeutic). BME is also traditionally logical sciences to advance health care treatment, including diagnosis, monitoring, and therapy. Also included under the scope of a biomedical engineer is the management of current medical equipment in hospitals while adhering to relevant industry standards.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.