Summary
Hypertrophic cardiomyopathy (HCM, or HOCM when obstructive) is a condition in which muscle tissues of the heart become thickened without an obvious cause. The parts of the heart most commonly affected are the interventricular septum and the ventricles. This results in the heart being less able to pump blood effectively and also may cause electrical conduction problems. People who have HCM may have a range of symptoms. People may be asymptomatic, or may have fatigue, leg swelling, and shortness of breath. It may also result in chest pain or fainting. Symptoms may be worse when the person is dehydrated. Complications may include heart failure, an irregular heartbeat, and sudden cardiac death. HCM is most commonly inherited in an autosomal dominant pattern. It is often due to mutations in certain genes involved with making heart muscle proteins. Other inherited causes of left ventricular hypertrophy may include Fabry disease, Friedreich's ataxia, and certain medications such as tacrolimus. Other considerations for causes of enlarged heart are athlete's heart and hypertension (high blood pressure). Making the diagnosis of HCM often involves a family history or pedigree, an electrocardiogram, echocardiogram, and stress testing. Genetic testing may also be done. HCM can be distinguished from other inherited causes of cardiomyopathy by its autosomal dominant pattern, whereas Fabry disease is X-linked, and Friedreich's ataxia is inherited in an autosomal recessive pattern. Treatment may depend on symptoms and other risk factors. Medications may include the use of beta blockers, verapamil or disopyramide. An implantable cardiac defibrillator may be recommended in those with certain types of irregular heartbeat. Surgery, in the form of a septal myectomy or heart transplant, may be done in those who do not improve with other measures. With treatment, the risk of death from the disease is less than one percent per year. HCM affects up to one in 200 people. Rates in men and women are about equal. People of all ages may be affected.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
BIO-377: Physiology by systems
Le but est de connaitre et comprendre le fonctionnement des systèmes cardiovasculaire, urinaire, respiratoire, digestif, ainsi que du métabolisme de base et sa régulation afin de déveloper une réflect
ME-481: Biomechanics of the cardiovascular system
This lecture will cover anatomy and physiology of the cardiovascular system, biophysics of the blood, cardiac mechanics, hemodynamics and biomechanics of the arterial system, microcirculation and biom
Related lectures (16)
Cardiac mechanics II
Explores the pressure-volume relationship in the cardiac cycle and pump function graphs.
Understanding Takotsubo Syndrome
Delves into Takotsubo syndrome, a heart condition triggered by stress, leading to acute heart failure.
Cardiovascular System Function: Fibers, Signal Generation, and Electromechanical Coupling
Explores cardiac fibers, signal generation, electromechanical coupling, and the cardiac cycle.
Show more